Favourable influence of hydrophobic surfaces on protein structure in porous organically-modified silica glasses.

[1]  P. Wittung-Stafshede,et al.  Macromolecular crowding increases structural content of folded proteins , 2007, FEBS letters.

[2]  J. Brennan,et al.  Effect of Ormosil and Polymer Doping on the Morphology of Separately and Co-hydrolyzed Silica Films Formed by a Two-Step Aqueous Processing Method , 2007 .

[3]  Ruey-an Doong,et al.  Preparation and characterization of urease-encapsulated biosensors in poly(vinyl alcohol)-modified silica sol-gel materials. , 2007, Biosensors & bioelectronics.

[4]  N K Chaudhury,et al.  Entrapment of biomolecules in sol-gel matrix for applications in biosensors: problems and future prospects. , 2007, Biosensors & bioelectronics.

[5]  A. Dunker,et al.  Engineering productive enzyme confinement. , 2007, Trends in biotechnology.

[6]  J. Brennan,et al.  Entrapment of horseradish peroxidase in sugar-modified silica monoliths: toward the development of a biocatalytic sensor. , 2007, Biosensors & bioelectronics.

[7]  D. Eggers,et al.  Hydrophobic, organically-modified silica gels enhance the secondary structure of encapsulated apomyoglobin. , 2007, Chemical communications.

[8]  Klaus Suhling,et al.  Diffusion in a sol-gel-derived medium with a view toward biosensor applications. , 2007, The journal of physical chemistry. B.

[9]  Henry Hess,et al.  Materials chemistry challenges in the design of hybrid bionanodevices: supporting protein function within artificial environments , 2007 .

[10]  S. Hyun,et al.  Effective preparation of crack-free silica aerogels via ambient drying , 2007 .

[11]  Jun Liu,et al.  Characterization of functionalized nanoporous supports for protein confinement , 2006, Nanotechnology.

[12]  Y. Ahn,et al.  Textural properties of ambient pressure dried water-glass based silica aerogel beads: One day synthesis , 2006 .

[13]  F. F. Moraes,et al.  NMR characterization of the role of silane precursors on the catalytic activity of sol-gel encapsulated lipase , 2006 .

[14]  K. Lowe,et al.  Circular dichroism spectroscopy of tertiary and quaternary conformations of human hemoglobin entrapped in wet silica gels , 2006, Protein science : a publication of the Protein Society.

[15]  C. Dobson,et al.  Protein misfolding, functional amyloid, and human disease. , 2006, Annual review of biochemistry.

[16]  D. Avnir,et al.  Recent bio-applications of sol–gel materials , 2006 .

[17]  R. Legge,et al.  Use of water to evaluate hydrophobicity of organically-modified xerogel enzyme supports. , 2005, Biotechnology and bioengineering.

[18]  A. Pierre,et al.  NMR and IR spectroscopy of silica aerogels with different hydrophobic characteristics , 2005 .

[19]  D. Higgins,et al.  Phase separation in class II organically modified silicate films as probed by phase-imaging atomic force microscopy. , 2005, Langmuir.

[20]  J. Brennan,et al.  Properties of Human Serum Albumin Entrapped in Sol−Gel-Derived Silica Bearing Covalently Tethered Sugars , 2005 .

[21]  A. Pierre,et al.  Hydrophobic silica aerogel-lipase biocatalysts Possible interactions between the enzyme and the gel , 2004 .

[22]  P. Lugli,et al.  Conformation and stability of myoglobin in dilute and crowded organically modified media , 2004 .

[23]  J. Brennan,et al.  Proteins Entrapped in Silica Monoliths Prepared from Glyceroxysilanes , 2004 .

[24]  A. Pierre,et al.  The sol-gel encapsulation of enzymes , 2004 .

[25]  M. Reetz,et al.  Second Generation Sol‐Gel Encapsulated Lipases: Robust Heterogeneous Biocatalysts , 2003 .

[26]  G. Strambini,et al.  Structure and dynamics of proteins encapsulated in silica hydrogels by Trp phosphorescence. , 2003, Biophysical chemistry.

[27]  Jun Liu,et al.  Entrapping enzyme in a functionalized nanoporous support. , 2002, Journal of the American Chemical Society.

[28]  J. Zink,et al.  Stabilization of Creatine Kinase Encapsulated in Silicate Sol-Gel Materials and Unusual Temperature Effects on Its Activity , 2002 .

[29]  John D. Brennan,et al.  Properties and applications of proteins encapsulated within sol–gel derived materials , 2002 .

[30]  A. Diaspro,et al.  Dynamics of green fluorescent protein mutant2 in solution, on spin‐coated glasses, and encapsulated in wet silica gels , 2002, Protein science : a publication of the Protein Society.

[31]  G. Stucky,et al.  Manipulation of pore size distributions in silica and ormosil gels dried under ambient pressure conditions , 2002 .

[32]  J. Valentine,et al.  Crowding and hydration effects on protein conformation: a study with sol-gel encapsulated proteins. , 2001, Journal of molecular biology.

[33]  J. Brennan,et al.  Effect of Matrix Aging on the Behavior of Human Serum Albumin Entrapped in a Tetraethyl Orthosilicate-Derived Glass , 2001 .

[34]  J. Badjić,et al.  Enantioselective aminolysis of an alpha-chloroester catalyzed by Candida cylindracea lipase encapsulated in sol-gel silica glass. , 2001, Organic letters.

[35]  A. Minton,et al.  The Influence of Macromolecular Crowding and Macromolecular Confinement on Biochemical Reactions in Physiological Media* , 2001, The Journal of Biological Chemistry.

[36]  R. Ellis,et al.  Macromolecular crowding: an important but neglected aspect of the intracellular environment. , 2001, Current opinion in structural biology.

[37]  J. Valentine,et al.  Molecular confinement influences protein structure and enhances thermal protein stability , 2001, Protein science : a publication of the Protein Society.

[38]  D. Loy,et al.  Substituent Effects on the Sol−Gel Chemistry of Organotrialkoxysilanes , 2000 .

[39]  J. Brennan,et al.  Controlling the Material Properties and Biological Activity of Lipase within Sol−Gel Derived Bioglasses via Organosilane and Polymer Doping , 2000 .

[40]  A. Ballesteros,et al.  Bioencapsulation within synthetic polymers (Part 1): sol-gel encapsulated biologicals. , 2000, Trends in biotechnology.

[41]  N. Kostić,et al.  Effects of Encapsulation in Sol−Gel Silica Glass on Esterase Activity, Conformational Stability, and Unfolding of Bovine Carbonic Anhydrase II , 1999 .

[42]  J. S. Hartman,et al.  Fluorescence and NMR Characterization and Biomolecule Entrapment Studies of Sol−Gel-Derived Organic−Inorganic Composite Materials Formed by Sonication of Precursors , 1999 .

[43]  J. Friedman,et al.  Impeded rotation of a protein in a sol-gel matrix , 1999 .

[44]  J. Brennan,et al.  Improving the Performance of a Sol−Gel-Entrapped Metal-Binding Protein by Maximizing Protein Thermal Stability before Entrapment , 1998 .

[45]  Bruce Dunn,et al.  Ambient Pressure Synthesis of Aerogel-Like Vanadium Oxide and Molybdenum Oxide , 1998 .

[46]  George W. Scherer,et al.  Effect of drying on properties of silica gel , 1997 .

[47]  M. Reetz,et al.  Characterization of hydrophobic sol-gel materials containing entrapped lipases , 1996 .

[48]  S. Saavedra,et al.  Spectroscopic characterization of albumin and myoglobin entrapped in bulk sol-gel glasses , 1994 .

[49]  C. Brinker,et al.  Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing , 1990 .

[50]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[51]  D. Puett Conformational studies on a glycosylated bovine pancreatic ribonuclease. , 1973, The Journal of biological chemistry.

[52]  N. Simionescu,et al.  PERMEABILITY OF MUSCLE CAPILLARIES TO EXOGENOUS MYOGLOBIN , 1973, The Journal of cell biology.

[53]  N. Greenfield Using circular dichroism spectra to estimate protein secondary structure , 2007, Nature Protocols.

[54]  H. Noureddini,et al.  Characterization of sol-gel immobilized lipases , 2007 .

[55]  Jong-Kil Kim,et al.  Preparation of Nano-Porous Silica Aerogel and Its Application to a Bio-Conversion Process , 2006 .

[56]  P. Pandey,et al.  Studies on New Ormosils Derived from Reactive Alkoxysilane Precursors as a Function of Hydrophobicity/Hydrophilicity , 2005 .

[57]  J. Hetflejš,et al.  Catalysis in Organic Solvents with Lipase Immobilized by Sol-Gel Technique , 2003 .

[58]  D. Avnir,et al.  Entrapment of Lipases in Hydrophobic Sol-Gel-Materials: Efficient Heterogeneous Biocatalysts in Aqueous Medium , 2000 .

[59]  Bruce Dunn,et al.  Synthesis of sol-gel encapsulated heme proteins with chemical sensing properties , 1999 .

[60]  E. Bismuto,et al.  Near-ultraviolet circular dichroic activity of apomyoglobin: resolution of the individual tryptophanyl contributions by site-directed mutagenesis , 1998, European Biophysics Journal.

[61]  J. Brennan,et al.  Measurement of intrinsic fluorescence to probe the conformational flexibility and thermodynamic stability of a single tryptophan protein entrapped in a sol–gel derived glass matrix , 1998 .

[62]  Thomas E. Creighton,et al.  Protein structure : a practical approach , 1997 .

[63]  D. Goodsell The Machinery of Life , 1993, Springer New York.

[64]  C. Brinker,et al.  Pore structure evolution in silica gel during aging/drying. III. Effects of surface tension* , 1992 .

[65]  F. Schmid,et al.  Spectral methods of characterizing protein conformation and conformational changes , 1989 .

[66]  D. H. Everett,et al.  Adsorption in slit-like and cylindrical micropores in the henry's law region. A model for the microporosity of carbons , 1976 .

[67]  Wallace Wurth,et al.  Fundamentals of Biochemistry: , 1936, Nature.