Parallelized approximation algorithms for minimum routing cost spanning trees

We parallelize several previously proposed algorithms for the minimum routing cost spanning tree problem and some related problems.

[1]  Vijay V. Vazirani,et al.  Matching is as easy as matrix inversion , 1987, STOC.

[2]  Róbert Szelepcsényi,et al.  The method of forced enumeration for nondeterministic automata , 1988, Acta Informatica.

[3]  Chuan Yi Tang,et al.  Approximation algorithms for some optimum communication spanning tree problems , 1998, Discret. Appl. Math..

[4]  D Gusfield,et al.  Efficient methods for multiple sequence alignment with guaranteed error bounds , 1993, Bulletin of mathematical biology.

[5]  Chuan Yi Tang,et al.  A polynomial time approximation scheme for minimum routing cost spanning trees , 1998, SODA '98.

[6]  David J. Lipman,et al.  MULTIPLE ALIGNMENT , COMMUNICATION COST , AND GRAPH MATCHING * , 1992 .

[7]  Michael Florian,et al.  Exact and approximate algorithms for optimal network design , 1979, Networks.

[8]  Eli Upfal,et al.  Constructing a perfect matching is in random NC , 1985, STOC '85.

[9]  Kun-Mao Chao,et al.  Spanning trees and optimization problems , 2004, Discrete mathematics and its applications.

[10]  R. Doolittle,et al.  Progressive sequence alignment as a prerequisitetto correct phylogenetic trees , 2007, Journal of Molecular Evolution.

[11]  Keith W. Ross,et al.  Computer networking - a top-down approach featuring the internet , 2000 .

[12]  Bang Ye Wu,et al.  A polynomial time approximation scheme for the two-source minimum routing cost spanning trees , 2002, J. Algorithms.

[13]  Matteo Fischetti,et al.  Exact algorithms for minimum routing cost trees , 2002, Networks.

[14]  Satish Rao,et al.  A tight bound on approximating arbitrary metrics by tree metrics , 2003, STOC '03.

[15]  Eitan M. Gurari,et al.  Introduction to the theory of computation , 1989 .

[16]  Hoang Hai Hoc A Computational Approach to the Selection of an Optimal Network , 1973 .

[17]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[18]  Yair Bartal,et al.  On approximating arbitrary metrices by tree metrics , 1998, STOC '98.

[19]  Sudipto Guha,et al.  Rounding via Trees : Deterministic Approximation Algorithms forGroup , 1998 .

[20]  T. C. Hu Optimum Communication Spanning Trees , 1974, SIAM J. Comput..

[21]  Richard T. Wong,et al.  Worst-Case Analysis of Network Design Problem Heuristics , 1980, SIAM J. Algebraic Discret. Methods.

[22]  Omer Reingold,et al.  Undirected ST-connectivity in log-space , 2005, STOC '05.

[23]  Avi Wigderson NL/poly /spl sube/ /spl oplus/L/poly , 1994, Proceedings of IEEE 9th Annual Conference on Structure in Complexity Theory.

[24]  Jan Karel Lenstra,et al.  The complexity of the network design problem , 1978, Networks.

[25]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[26]  E. Fischer THE ART OF UNINFORMED DECISIONS: A PRIMER TO PROPERTY TESTING , 2004 .

[27]  Chuan Yi Tang,et al.  A Polynomial Time Approximation Scheme for Optimal Product-Requirement Communication Spanning Trees , 2000, J. Algorithms.

[28]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[29]  Chuan Yi Tang,et al.  Approximation algorithms for some optimum communication spanning tree problems , 2000, Discret. Appl. Math..

[30]  Eric Allender,et al.  Making nondeterminism unambiguous , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[31]  R. Weischedel,et al.  Optimal Network Problem: A Branch-and-Bound Algorithm , 1973 .

[32]  Chuan Yi Tang,et al.  Approximation algorithms for the shortest total path length spanning tree problem , 2000, Discret. Appl. Math..

[33]  Kathryn Fraughnaugh,et al.  Introduction to graph theory , 1973, Mathematical Gazette.