Asynchronous Event-Based Binocular Stereo Matching

We present a novel event-based stereo matching algorithm that exploits the asynchronous visual events from a pair of silicon retinas. Unlike conventional frame-based cameras, recent artificial retinas transmit their outputs as a continuous stream of asynchronous temporal events, in a manner similar to the output cells of the biological retina. Our algorithm uses the timing information carried by this representation in addressing the stereo-matching problem on moving objects. Using the high temporal resolution of the acquired data stream for the dynamic vision sensor, we show that matching on the timing of the visual events provides a new solution to the real-time computation of 3-D objects when combined with geometric constraints using the distance to the epipolar lines. The proposed algorithm is able to filter out incorrect matches and to accurately reconstruct the depth of moving objects despite the low spatial resolution of the sensor. This brief sets up the principles for further event-based vision processing and demonstrates the importance of dynamic information and spike timing in processing asynchronous streams of visual events.

[1]  G. Bard Ermentrout,et al.  Synchronization in a pool of mutually coupled oscillators with random frequencies , 1985 .

[2]  Ryad Benosman,et al.  Asynchronous Event-Based Hebbian Epipolar Geometry , 2011, IEEE Transactions on Neural Networks.

[3]  Tianyou Chai,et al.  Nonlinear multivariable adaptive control using multiple models and neural networks , 2007, Autom..

[4]  Daniel Matolin,et al.  A QVGA 143dB dynamic range asynchronous address-event PWM dynamic image sensor with lossless pixel-level video compression , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[5]  Tomaso Poggio,et al.  Cooperative computation of stereo disparity , 1988 .

[6]  Håkan Hjalmarsson,et al.  How to Make Bias and Variance Errors Insensitive to System and Model Complexity in Identification , 2011, IEEE Transactions on Automatic Control.

[7]  F. Werblin,et al.  Rapid global shifts in natural scenes block spiking in specific ganglion cell types , 2003, Nature Neuroscience.

[8]  Meng Joo Er,et al.  Dynamic fuzzy neural networks-a novel approach to function approximation , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[9]  Frederic Devernay,et al.  A Variational Method for Scene Flow Estimation from Stereo Sequences , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[10]  Giacomo Indiveri,et al.  A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity , 2006, IEEE Transactions on Neural Networks.

[11]  M. Abeles Role of the cortical neuron: integrator or coincidence detector? , 1982, Israel journal of medical sciences.

[12]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  Friedhelm Schwenker,et al.  Three learning phases for radial-basis-function networks , 2001, Neural Networks.

[14]  Jacek M. Zurada,et al.  RBF-based neurodynamic nearest neighbor classification in real pattern space , 2006, Pattern Recognit..

[15]  George W. Irwin,et al.  A Novel Continuous Forward Algorithm for RBF Neural Modelling , 2007, IEEE Transactions on Automatic Control.

[16]  Bertram E. Shi,et al.  A Neuromorphic Multi-chip Model of a Disparity Selective Complex Cell , 2003, NIPS.

[17]  Guang-Bin Huang,et al.  Neuron selection for RBF neural network classifier based on data structure preserving criterion , 2005, IEEE Transactions on Neural Networks.

[18]  Youmin Zhang,et al.  A revisit to block and recursive least squares for parameter estimation , 2004, Comput. Electr. Eng..

[19]  Tobi Delbrück,et al.  Improved ON/OFF temporally differentiating address-event imager , 2004, Proceedings of the 2004 11th IEEE International Conference on Electronics, Circuits and Systems, 2004. ICECS 2004..

[20]  George W. Irwin,et al.  A fast nonlinear model identification method , 2005, IEEE Transactions on Automatic Control.

[21]  Pedro Antonio Gutiérrez,et al.  Logistic Regression by Means of Evolutionary Radial Basis Function Neural Networks , 2011, IEEE Transactions on Neural Networks.

[22]  Kang Li,et al.  A two-stage algorithm for identification of nonlinear dynamic systems , 2006, Autom..

[23]  Christoph Sulzbachner,et al.  Bio-inspired Stereo Vision System with Silicon Retina Imagers , 2009, ICVS.

[24]  Eugenio Culurciello,et al.  Activity-driven, event-based vision sensors , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[25]  Karim Salahshoor,et al.  Affine modeling of nonlinear multivariable processes using a new adaptive neural network-based approach , 2009 .

[26]  Michael Isard,et al.  Estimating disparity and occlusions in stereo video sequences , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[27]  George W. Irwin,et al.  Fast Forward RBF Network Construction Based on Particle Swarm Optimization , 2010, LSMS/ICSEE.

[28]  Tobi Delbrück,et al.  Cooperative Stereo Matching Using Static and Dynamic Image Features , 1989, Analog VLSI Implementation of Neural Systems.

[29]  T. Delbruck,et al.  > Replace This Line with Your Paper Identification Number (double-click Here to Edit) < 1 , 2022 .

[30]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[31]  Michael J. Berry,et al.  The Neural Code of the Retina , 1999, Neuron.

[32]  Najla Megherbi Bouallagu,et al.  Object Recognition using 3D SIFT in Complex CT Volumes , 2010, BMVC.

[33]  Junfei Qiao,et al.  An efficient self-organizing RBF neural network for water quality prediction , 2011, Neural Networks.

[34]  Minglun Gong Enforcing Temporal Consistency in Real-Time Stereo Estimation , 2006, ECCV.

[35]  Hans Knutsson,et al.  Signal processing for computer vision , 1994 .

[36]  Li Zhang,et al.  Spacetime stereo: shape recovery for dynamic scenes , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[37]  Jun Wu,et al.  Nonlinear system modeling and predictive control using the RBF nets-based quasi-linear ARX model☆ , 2009 .

[38]  Kamesh Subbarao,et al.  Direction-Dependent Learning Approach for Radial Basis Function Networks , 2007, IEEE Transactions on Neural Networks.

[39]  John K. Tsotsos,et al.  Applying temporal constraints to the dynamic stereo problem , 1986, Comput. Vis. Graph. Image Process..

[40]  Leszek Rutkowski,et al.  A fast training algorithm for neural networks , 1998 .

[41]  Allen M. Waxman,et al.  Binocular Image Flows: Steps Toward Stereo-Motion Fusion , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  James J. Carroll,et al.  Approximation of nonlinear systems with radial basis function neural networks , 2001, IEEE Trans. Neural Networks.

[43]  Kwabena Boahen,et al.  Synchrony in Silicon: The Gamma Rhythm , 2007, IEEE Transactions on Neural Networks.

[44]  Misha A. Mahowald,et al.  An Analog VLSI System for Stereoscopic Vision , 1994 .

[45]  T. Poggio,et al.  A generalized ordering constraint for stereo correspondence , 1984 .

[46]  Nor Ashidi Mat Isa,et al.  Modified Recursive Least Squares algorithm to train the Hybrid Multilayered Perceptron (HMLP) network , 2010, Appl. Soft Comput..

[47]  日本自動制御協会,et al.  システムと制御 = Systems and control , 1971 .

[48]  Carlo Tomasi,et al.  Good features to track , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[49]  Zhihong Man,et al.  A New Adaptive Backpropagation Algorithm Based on Lyapunov Stability Theory for Neural Networks , 2006, IEEE Transactions on Neural Networks.

[50]  Junfei Qiao,et al.  A Repair Algorithm for Radial Basis Function Neural Network and its Application to Chemical oxygen Demand Modeling , 2010, Int. J. Neural Syst..

[51]  Tobi Delbrück,et al.  A 128$\times$ 128 120 dB 15 $\mu$s Latency Asynchronous Temporal Contrast Vision Sensor , 2008, IEEE Journal of Solid-State Circuits.

[52]  Okyay Kaynak,et al.  The fusion of computationally intelligent methodologies and sliding-mode control-a survey , 2001, IEEE Trans. Ind. Electron..

[53]  Misha Anne Mahowald,et al.  VLSI analogs of neuronal visual processing: a synthesis of form and function , 1992 .

[54]  Ricardo Carelli,et al.  Autonomous mobile robots navigation using RBF neural compensator , 2011 .

[55]  Vincenzo Piuri,et al.  A Hierarchical RBF Online Learning Algorithm for Real-Time 3-D Scanner , 2010, IEEE Transactions on Neural Networks.