Recent Progress in Rechargeable Potassium Batteries

[1]  C. F. V. Weizsäcker,et al.  Die Unendlichkeit der Welt(). Eine Studie über das Symbolische in der Naturwissenschaft , 1944 .

[2]  Xiulei Ji,et al.  Potassium Secondary Batteries. , 2017, ACS applied materials & interfaces.

[3]  Xinping Ai,et al.  High capacity and rate capability of amorphous phosphorus for sodium ion batteries. , 2013, Angewandte Chemie.

[4]  Shinichi Komaba,et al.  Study on polymer binders for high-capacity SiO negative electrode of Li-Ion batteries , 2011 .

[5]  Arumugam Manthiram,et al.  Rechargeable lithium-sulfur batteries. , 2014, Chemical reviews.

[6]  Ulrich S. Schubert,et al.  Carbonyls: Powerful Organic Materials for Secondary Batteries , 2015 .

[7]  Chong Seung Yoon,et al.  Toward High-Safety Potassium–Sulfur Batteries Using a Potassium Polysulfide Catholyte and Metal-Free Anode , 2018 .

[8]  Kang Xu,et al.  Electrolytes and interphases in Li-ion batteries and beyond. , 2014, Chemical reviews.

[9]  A. Pelton,et al.  Thermodynamic properties of liquid K-Bi alloys by electromotive force measurements , 1988 .

[10]  T. Sheela,et al.  Conversion reactions: a new pathway to realise energy in lithium-ion battery—review , 2009 .

[11]  Yi Cui,et al.  A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage , 2012, Nature Communications.

[12]  A. Pelton,et al.  The Bi-K bismuth-potassium system , 1991 .

[13]  Joseph Paul Baboo,et al.  Amorphous iron phosphate: potential host for various charge carrier ions , 2014 .

[14]  G. Parry,et al.  Formation and structure of the potassium graphites , 1968 .

[15]  Jang‐Yeon Hwang,et al.  Sodium-ion batteries: present and future. , 2017, Chemical Society reviews.

[16]  Jun Liu,et al.  A Low Cost, High Energy Density, and Long Cycle Life Potassium–Sulfur Battery for Grid‐Scale Energy Storage , 2015, Advanced materials.

[17]  Liang Zhou,et al.  Novel K3V2(PO4)3/C Bundled Nanowires as Superior Sodium‐Ion Battery Electrode with Ultrahigh Cycling Stability , 2015 .

[18]  R. Dominko,et al.  Anthraquinone-Based Polymer as Cathode in Rechargeable Magnesium Batteries. , 2015, ChemSusChem.

[19]  K. Kubota,et al.  P2- and P3-KxCoO2 as an electrochemical potassium intercalation host. , 2017, Chemical communications.

[20]  Xin-bo Zhang,et al.  Transformation of Rusty Stainless-Steel Meshes into Stable, Low-Cost, and Binder-Free Cathodes for High-Performance Potassium-Ion Batteries. , 2017, Angewandte Chemie.

[21]  Jusef Hassoun,et al.  Transition metal oxide-carbon composites as conversion anodes for sodium-ion battery , 2015 .

[22]  Kyung Yoon Chung,et al.  NaCrO2 cathode for high-rate sodium-ion batteries , 2015 .

[23]  M. Johannes,et al.  Defect chemistry in layered transition-metal oxides from screened hybrid density functional calculations , 2014, 1412.5064.

[24]  Adam P. Cohn,et al.  Mechanism of potassium ion intercalation staging in few layered graphene from in situ Raman spectroscopy. , 2016, Nanoscale.

[25]  K. Amine,et al.  Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries , 2011 .

[26]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .

[27]  Wei Huang,et al.  Heteroatom-doped graphene materials: syntheses, properties and applications. , 2014, Chemical Society reviews.

[28]  Xinzheng Yang,et al.  Controlling the Compositional Chemistry in Single Nanoparticles for Functional Hollow Carbon Nanospheres. , 2017, Journal of the American Chemical Society.

[29]  A. Manthiram,et al.  High‐Energy, High‐Rate, Lithium–Sulfur Batteries: Synergetic Effect of Hollow TiO2‐Webbed Carbon Nanotubes and a Dual Functional Carbon‐Paper Interlayer , 2016 .

[30]  J. Tarascon,et al.  Preparation and Characterization of a Stable FeSO4F-Based Framework for Alkali Ion Insertion Electrodes , 2012 .

[31]  M. Winter,et al.  Alternative electrochemical energy storage: potassium-based dual-graphite batteries , 2017 .

[32]  T. E. Gier,et al.  KxRb1−xTiOPO4: A new nonlinear optical material , 1976 .

[33]  Terence B. Hook,et al.  Power and Technology Scaling into the 5 nm Node with Stacked Nanosheets , 2017 .

[34]  Yongil Kim,et al.  Tin Phosphide as a Promising Anode Material for Na‐Ion Batteries , 2014, Advanced materials.

[35]  Xiao Wei Sun,et al.  A bi-functional device for self-powered electrochromic window and self-rechargeable transparent battery applications , 2014, Nature Communications.

[36]  C. Ling,et al.  First-Principles Study of Alkali and Alkaline Earth Ion Intercalation in Iron Hexacyanoferrate: The Important Role of Ionic Radius , 2013 .

[37]  P. Sharma,et al.  Perylene-polyimide-Based Organic Electrode Materials for Rechargeable Lithium Batteries , 2013 .

[38]  Biao Zhang,et al.  Bismuth Microparticles as Advanced Anodes for Potassium‐Ion Battery , 2018 .

[39]  Jiangwei Wang,et al.  High rate and long cycle life porous carbon nanofiber paper anodes for potassium-ion batteries , 2017 .

[40]  Tian Zheng,et al.  Boosting the Potassium Storage Performance of Alloy‐Based Anode Materials via Electrolyte Salt Chemistry , 2018 .

[41]  Shinichi Komaba,et al.  Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors , 2015 .

[42]  Konstantin Konstantinov,et al.  A new energy storage system: Rechargeable potassium-selenium battery , 2017 .

[43]  N. Sharma,et al.  An Initial Review of the Status of Electrode Materials for Potassium‐Ion Batteries , 2017 .

[44]  Chunsheng Wang,et al.  Electrochemical Intercalation of Potassium into Graphite , 2016 .

[45]  G. Ceder,et al.  K‐Ion Batteries Based on a P2‐Type K0.6CoO2 Cathode , 2017 .

[46]  A. Glushenkov,et al.  K-ion and Na-ion storage performances of Co3O4-Fe2O3 nanoparticle-decorated super P carbon black prepared by a ball milling process. , 2017, Nanoscale.

[47]  E. Plichta,et al.  Oxygen Reduction Reactions in Ionic Liquids and the Formulation of a General ORR Mechanism for Li–Air Batteries , 2012 .

[48]  Yunhui Huang,et al.  A GGA+U study of lithium diffusion in vanadium doped LiFePO4 , 2012 .

[49]  N. Munichandraiah,et al.  K2Ti4O9: A Promising Anode Material for Potassium Ion Batteries , 2016 .

[50]  Yiying Wu,et al.  Reversible Dendrite-Free Potassium Plating and Stripping Electrochemistry for Potassium Secondary Batteries. , 2017, Journal of the American Chemical Society.

[51]  Guochun Li,et al.  A Fe/Mn-Based Prussian Blue Analogue as a K-Rich Cathode Material for Potassium-Ion Batteries , 2017 .

[52]  Qian Wang,et al.  Boron-Doped Graphene as a Promising Anode Material for Potassium-Ion Batteries with a Large Capacity, High Rate Performance, and Good Cycling Stability , 2017 .

[53]  Gerbrand Ceder,et al.  Recent Progress and Perspective in Electrode Materials for K‐Ion Batteries , 2018 .

[54]  W. Richards,et al.  Li-ion conductivity in Li9S3N , 2015 .

[55]  Brian C. Olsen,et al.  Lithium ion battery applications of molybdenum disulfide (MoS2) nanocomposites , 2014 .

[56]  Xiulei Ji,et al.  An Organic Pigment as a High‐Performance Cathode for Sodium‐Ion Batteries , 2014 .

[57]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[58]  Guangyuan Zheng,et al.  A phosphorene-graphene hybrid material as a high-capacity anode for sodium-ion batteries. , 2015, Nature nanotechnology.

[59]  A. Glushenkov,et al.  Tin-based composite anodes for potassium-ion batteries. , 2016, Chemical communications.

[60]  Yan Yao,et al.  Poly(anthraquinonyl sulfide) cathode for potassium-ion batteries , 2016 .

[61]  Alex Bates,et al.  Ex-situ X-ray diffraction analysis of electrode strain at TiO2 atomic layer deposition/α-MoO3 interface in a novel aqueous potassium ion battery , 2016 .

[62]  Jiwen Feng,et al.  A low cost, all-organic Na-ion Battery Based on Polymeric Cathode and Anode , 2013, Scientific Reports.

[63]  J. Sangster K-P (Potassium-Phosphorus) System , 2010 .

[64]  B. Steen,et al.  Non-aqueous electrolytes for sodium-ion batteries , 2015 .

[65]  Kangsheng Huang,et al.  Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries , 2017 .

[66]  Young Gyu Kim,et al.  Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl)imide-based ionic liquid for lithium-ion batteries , 2012 .

[67]  K. Kubota,et al.  KVPO4F and KVOPO4 toward 4 volt-class potassium-ion batteries. , 2017, Chemical communications.

[68]  Jin Han,et al.  Nanocubic KTi2(PO4)3 electrodes for potassium-ion batteries. , 2016, Chemical communications.

[69]  T. Grande,et al.  Diffusion of alkali metals in the first stage graphite intercalation compounds by vdW-DFT calculations , 2015 .

[70]  Li Li,et al.  Aprotic and aqueous Li-O₂ batteries. , 2014, Chemical reviews.

[71]  Hong Wang,et al.  Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries , 2018, Materials Research Bulletin.

[72]  Joachim Maier,et al.  Lithium Storage in Carbon Nanostructures , 2009, Advanced materials.

[73]  Md. Mokhlesur Rahman,et al.  Nanocrystalline SnS2 coated onto reduced graphene oxide: demonstrating the feasibility of a non-graphitic anode with sulfide chemistry for potassium-ion batteries. , 2017, Chemical communications.

[74]  Yunhong Zhou,et al.  Anthraquinone based polymer as high performance cathode material for rechargeable lithium batteries. , 2009, Chemical communications.

[75]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[76]  Yang Zheng,et al.  CoS Quantum Dot Nanoclusters for High‐Energy Potassium‐Ion Batteries , 2017 .

[77]  Fan Zhang,et al.  A Novel Potassium‐Ion‐Based Dual‐Ion Battery , 2017, Advanced materials.

[78]  Yuki Yamada,et al.  Theoretical Analysis of Interactions between Potassium Ions and Organic Electrolyte Solvents: A Comparison with Lithium, Sodium, and Magnesium Ions , 2017 .

[79]  Y. Lai,et al.  Dispersion-corrected DFT investigation on defect chemistry and potassium migration in potassium-graphite intercalation compounds for potassium ion batteries anode materials , 2016 .

[80]  Jun Lu,et al.  Metal–Air Batteries: Will They Be the Future Electrochemical Energy Storage Device of Choice? , 2017 .

[81]  A. Abakumov,et al.  AVPO4F (A = Li, K): A 4 V Cathode Material for High-Power Rechargeable Batteries , 2016 .

[82]  Li Yang,et al.  Recent progress in conversion reaction metal oxide anodes for Li-ion batteries , 2017 .

[83]  Xueliang Sun,et al.  Sodium‐Oxygen Batteries: A Comparative Review from Chemical and Electrochemical Fundamentals to Future Perspective , 2016, Advanced materials.

[84]  Tengfei Zhou,et al.  Ultra-light and flexible pencil-trace anode for high performance potassium-ion and lithium-ion batteries , 2017 .

[85]  Xiaodi Ren,et al.  Potassium-Ion Oxygen Battery Based on a High Capacity Antimony Anode. , 2015, ACS applied materials & interfaces.

[86]  Yi Cui,et al.  Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. , 2011, Nano letters.

[87]  Xiulin Fan,et al.  Layered P2‐Type K0.65Fe0.5Mn0.5O2 Microspheres as Superior Cathode for High‐Energy Potassium‐Ion Batteries , 2018, Advanced Functional Materials.

[88]  Jun Chen,et al.  Robust self-supported anode by integrating Sb2S3 nanoparticles with S,N-codoped graphene to enhance K-storage performance , 2017, Science China Chemistry.

[89]  Steven D. Lacey,et al.  Organic electrode for non-aqueous potassium-ion batteries , 2015 .

[90]  K. Amine,et al.  A metal-free, lithium-ion oxygen battery: a step forward to safety in lithium-air batteries. , 2012, Nano letters.

[91]  G. Ceder,et al.  Investigation of Potassium Storage in Layered P3‐Type K0.5MnO2 Cathode , 2017, Advanced materials.

[92]  W. Park,et al.  Reversible K+-Insertion/Deinsertion and Concomitant Na+-Redistribution in P′3-Na0.52CrO2 for High-Performance Potassium-Ion Battery Cathodes , 2018 .

[93]  S. Dou,et al.  Bismuth: A new anode for the Na-ion battery , 2015 .

[94]  Kai Zhang,et al.  Potassium-sulfur batteries: a new member of room-temperature rechargeable metal-sulfur batteries. , 2014, Inorganic chemistry.

[95]  Keith Share,et al.  Role of Nitrogen-Doped Graphene for Improved High-Capacity Potassium Ion Battery Anodes. , 2016, ACS nano.

[96]  A. Zarbin,et al.  Carbon nanotube/Prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery. , 2016, Journal of colloid and interface science.

[97]  Xuanxuan Bi,et al.  Understanding side reactions in K-O2 batteries for improved cycle life. , 2014, ACS applied materials & interfaces.

[98]  Ling Fan,et al.  Potassium-Based Dual Ion Battery with Dual-Graphite Electrode. , 2017, Small.

[99]  T. Matsue,et al.  Electrochemical Studies of Spinel LiMn2O4 Films Prepared by Electrostatic Spray Deposition. , 1998 .

[100]  S. Dou,et al.  Activated carbon from the graphite with increased rate capability for the potassium ion battery , 2017 .

[101]  王志远,et al.  K0.67Ni0.17Co0.17Mn0.66O2: A cathode material for potassium-ion battery , 2017 .

[102]  Yiying Wu,et al.  The Long-Term Stability of KO2 in K-O2 Batteries. , 2018, Angewandte Chemie.

[103]  Jun Chen,et al.  Bulk Bismuth as a High‐Capacity and Ultralong Cycle‐Life Anode for Sodium‐Ion Batteries by Coupling with Glyme‐Based Electrolytes , 2017, Advanced materials.

[104]  W. Luo,et al.  Potassium Ion Batteries with Graphitic Materials. , 2015, Nano letters.

[105]  Yury Gogotsi,et al.  Prediction and characterization of MXene nanosheet anodes for non-lithium-ion batteries. , 2014, ACS nano.

[106]  Y. Liu,et al.  In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers. , 2014, Nano letters.

[107]  M. Shaijumon,et al.  A polyimide based all-organic sodium ion battery , 2015 .

[108]  Kazuhiko Matsumoto,et al.  Physicochemical and Electrochemical Properties of K[N(SO2F)2]–[N-Methyl-N-propylpyrrolidinium][N(SO2F)2] Ionic Liquids for Potassium-Ion Batteries , 2017 .

[109]  K. Kubota,et al.  A novel K-ion battery: hexacyanoferrate(II)/graphite cell , 2017 .

[110]  K. Kang,et al.  A comparative study of graphite electrodes using the co-intercalation phenomenon for rechargeable Li, Na and K batteries. , 2016, Chemical communications.

[111]  A. Manthiram,et al.  Low-Cost High-Energy Potassium Cathode. , 2017, Journal of the American Chemical Society.

[112]  Yi Zhang,et al.  Sulfur nanocomposite as a positive electrode material for rechargeable potassium-sulfur batteries. , 2018, Chemical communications.

[113]  Linda F. Nazar,et al.  Crystallite Size Control of Prussian White Analogues for Nonaqueous Potassium-Ion Batteries , 2017 .

[114]  Lei Qin,et al.  Dendrite-Free Potassium-Oxygen Battery Based on a Liquid Alloy Anode. , 2017, ACS applied materials & interfaces.

[115]  R. Solanki,et al.  Prussian Green: A High Rate Capacity Cathode for Potassium Ion Batteries , 2015 .

[116]  Z. Fu,et al.  Long life and high-rate Berlin green FeFe(CN)6 cathode material for a non-aqueous potassium-ion battery , 2017 .

[117]  T. Grande,et al.  Van der Waals density functional study of the energetics of alkali metal intercalation in graphite , 2014 .

[118]  Deepak Kumar,et al.  Progress and prospects of sodium-sulfur batteries: A review , 2017 .

[119]  A. Eftekhari Potassium secondary cell based on Prussian blue cathode , 2004 .

[120]  Yang Xu,et al.  Potassium Prussian Blue Nanoparticles: A Low‐Cost Cathode Material for Potassium‐Ion Batteries , 2017 .

[121]  Igor Luzinov,et al.  Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. , 2010, ACS applied materials & interfaces.

[122]  A. Manthiram,et al.  Ambient temperature sodium-sulfur batteries. , 2015, Small.

[123]  A. Glushenkov,et al.  High capacity potassium-ion battery anodes based on black phosphorus , 2017 .

[124]  Haoshen Zhou,et al.  Recent advances in titanium-based electrode materials for stationary sodium-ion batteries , 2016 .

[125]  Ilias Belharouak,et al.  Radially aligned hierarchical columnar structure as a cathode material for high energy density sodium-ion batteries , 2015, Nature Communications.

[126]  Jin Han,et al.  Exploration of K2Ti8O17 as an anode material for potassium-ion batteries. , 2016, Chemical communications.

[127]  Xiulin Fan,et al.  Superior Stable Self‐Healing SnP3 Anode for Sodium‐Ion Batteries , 2015 .

[128]  D. Su,et al.  Hard–Soft Composite Carbon as a Long‐Cycling and High‐Rate Anode for Potassium‐Ion Batteries , 2017 .

[129]  Hong Wang,et al.  Novel fabrication of N-doped hierarchically porous carbon with exceptional potassium storage properties , 2018 .

[130]  F. Liu,et al.  Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries. , 2017, Chemical communications.

[131]  X. Bao,et al.  Ti3C2 MXene-Derived Sodium/Potassium Titanate Nanoribbons for High-Performance Sodium/Potassium Ion Batteries with Enhanced Capacities. , 2017, ACS nano.

[132]  P. Hagenmuller,et al.  Les bronzes de cobalt KxCoO2 (x < 1). L'oxyde KCoO2 , 1975 .

[133]  T. Sasaki,et al.  Synthesis and soft-chemical reactivity of layered potassium cobalt oxide , 2005 .

[134]  D. Wexler,et al.  Reversible sodium storage via conversion reaction of a MoS₂-C composite. , 2014, Chemical communications.

[135]  O. Bondarchuk,et al.  Higher voltage plateau cubic Prussian White for Na-ion batteries , 2016 .

[136]  T. Wanger The Lithium future—resources, recycling, and the environment , 2011 .

[137]  Yi Cui,et al.  Copper hexacyanoferrate battery electrodes with long cycle life and high power. , 2011, Nature communications.

[138]  Y. Zhai,et al.  K0.67Ni0.17Co0.17Mn0.66O2: A cathode material for potassium-ion battery , 2017 .

[139]  Mingwen Zhao,et al.  Germanium sulfide nanosheet: a universal anode material for alkali metal ion batteries , 2016 .

[140]  Lin Gu,et al.  Amorphous Red Phosphorus Embedded in Highly Ordered Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity. , 2016, Nano letters.

[141]  K. M. Abraham,et al.  A Polymer Electrolyte‐Based Rechargeable Lithium/Oxygen Battery , 1996 .

[142]  Richard J. Lee,et al.  Sustainable Potassium-Ion Battery Anodes Derived from Waste-Tire Rubber , 2017 .

[143]  S. Passerini,et al.  Non-Aqueous K-Ion Battery Based on Layered K0.3MnO2 and Hard Carbon/Carbon Black , 2016 .

[144]  S. Choudhury,et al.  A stable room-temperature sodium–sulfur battery , 2016, Nature Communications.

[145]  X. Bao,et al.  Alkalized Ti3C2 MXene nanoribbons with expanded interlayer spacing for high-capacity sodium and potassium ion batteries , 2017 .

[146]  Jun Chen,et al.  High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes , 2017 .

[147]  Wei Lu,et al.  Superior Potassium Ion Storage via Vertical MoS2 "Nano-Rose" with Expanded Interlayers on Graphene. , 2017, Small.

[148]  M. Nakayama,et al.  First-principles study of lithium ion migration in lithium transition metal oxides with spinel structure. , 2012, Physical chemistry chemical physics : PCCP.

[149]  Jean-Marie Tarascon,et al.  Na2Ti3O7: Lowest voltage ever reported oxide insertion electrode for sodium ion batteries , 2011 .

[150]  Zhixin Chen,et al.  Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode. , 2017, Journal of the American Chemical Society.

[151]  Meng Huang,et al.  Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries. , 2017, Nano letters.

[152]  Peter R. Slater,et al.  Atomic-Scale Investigation of Defects, Dopants, and Lithium Transport in the LiFePO4 Olivine-Type Battery Material , 2005 .

[153]  Xiulei Ji,et al.  Emerging Non-Aqueous Potassium-Ion Batteries: Challenges and Opportunities , 2017 .

[154]  P. Barpanda,et al.  Electrochemical potassium-ion intercalation in NaxCoO2: a novel cathode material for potassium-ion batteries. , 2017, Chemical communications.

[155]  Yang‐Kook Sun,et al.  Lithium-ion batteries. A look into the future , 2011 .

[156]  G. Henkelman,et al.  Calculations of Li-Ion Diffusion in Olivine Phosphates , 2011 .

[157]  T. Matsue,et al.  Electrochemical Studies of Spinel LiMn_2O_4 Films Prepared by Electrostatic Spray Deposition , 1998 .

[158]  Shuai Zhang,et al.  Direct Synthesis of Few-Layer F-Doped Graphene Foam and Its Lithium/Potassium Storage Properties. , 2016, ACS applied materials & interfaces.

[159]  Jianjun Jiang,et al.  Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries , 2017 .

[160]  Chaojiang Niu,et al.  Polycrystalline soft carbon semi-hollow microrods as anode for advanced K-ion full batteries. , 2017, Nanoscale.

[161]  Guangyuan Zheng,et al.  Formation of stable phosphorus-carbon bond for enhanced performance in black phosphorus nanoparticle-graphite composite battery anodes. , 2014, Nano letters.

[162]  Zelang Jian,et al.  Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries , 2017 .

[163]  Clement Bommier,et al.  Hard Carbon Microspheres: Potassium‐Ion Anode Versus Sodium‐Ion Anode , 2016 .

[164]  Jun Chen,et al.  Oxocarbon Salts for Fast Rechargeable Batteries. , 2016, Angewandte Chemie.

[165]  C. Li,et al.  Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low-cost K-ion batteries , 2017 .

[166]  Xiaodi Ren,et al.  MoS2 as a long-life host material for potassium ion intercalation , 2017, Nano Research.

[167]  Andrew McDonagh,et al.  High‐Capacity Aqueous Potassium‐Ion Batteries for Large‐Scale Energy Storage , 2017, Advanced materials.

[168]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[169]  Yang‐Kook Sun,et al.  Carbon-coated Li4Ti5O12 nanowires showing high rate capability as an anode material for rechargeable sodium batteries , 2015 .

[170]  A. Pelton,et al.  The K-Sb (Potassium-Antimony) system , 1993 .

[171]  Michael Höck,et al.  Lithium market research – global supply, future demand and price development , 2017 .

[172]  M. Dresselhaus,et al.  Intercalation compounds of graphite , 1981 .

[173]  P. Hagenmuller,et al.  Electrochemical intercalation of sodium in NaxCoO2 bronzes , 1981 .

[174]  D. Aurbach,et al.  Electrochemical Properties of Sulfurized-Polyacrylonitrile Cathode for Lithium-Sulfur Batteries: Effect of Polyacrylic Acid Binder and Fluoroethylene Carbonate Additive. , 2017, The journal of physical chemistry letters.

[175]  Y. Marcus Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents: Part 3 - Standard potentials of selected electrodes , 1985 .

[176]  Yiying Wu,et al.  A low-overpotential potassium-oxygen battery based on potassium superoxide. , 2013, Journal of the American Chemical Society.

[177]  J. Tse,et al.  Li ion diffusion mechanisms in LiFePO4: an ab initio molecular dynamics study. , 2011, The journal of physical chemistry. A.

[178]  Arvind Varma,et al.  Binder-Free N- and O-Rich Carbon Nanofiber Anodes for Long Cycle Life K-Ion Batteries. , 2017, ACS applied materials & interfaces.

[179]  R. Nishitani,et al.  In situ observation of staging in potassium-graphite intercalation compounds , 1983 .

[180]  Ming Zhang,et al.  Enhanced conductivity and properties of SnO2-graphene-carbon nanofibers for potassium-ion batteries by graphene modification , 2018 .

[181]  Xiaodi Ren,et al.  Probing Mechanisms for Inverse Correlation between Rate Performance and Capacity in K-O2 Batteries. , 2017, ACS applied materials & interfaces.

[182]  Xiulei Ji,et al.  Carbon Electrodes for K-Ion Batteries. , 2015, Journal of the American Chemical Society.

[183]  T. Brousse,et al.  Aluminum negative electrode in lithium ion batteries , 2001 .