Curvature Attribute from Surface-Restoration as Predictor Variable in Kupferschiefer Copper Potentials

This work explains a procedure to predict Cu potentials in the ore-Kupferschiefer using structural surface-restoration and logistic regression (LR) analysis. The predictor in the assessments are established from the restored horizon that contains the ore-series. Applying flexural-slip to unfold/unfault the 3D model of the Fore-Sudetic Monocline, we obtained curvature for each restored time. We found that curvature represents one of the main structural features related to the Cu mineralization. Maximum curvature corresponds to high internal deformation in the restored layers, evidencing faulting and damaged areas in the 3D model. Thus, curvature may highlight fault systems that drove fluid circulation from the basement and host the early mineralization stages. In the Cu potential modeling, curvature, distance to the Fore-Sudetic Block and depth of restored Zechstein at Cretaceous time are used as predictors and proven Cu-potential areas as targets. Then, we applied LR analysis establishing the separating function between mineralized and non-mineralized locations. The LR models show positive correspondence between predicted probabilities of Cu-potentials and curvature estimated on the surface depicting the mineralized layer. Nevertheless, predicted probabilities are particularly higher using curvatures obtained from Late Paleozoic and Late Triassic restorations.

[1]  Société géologique de Belgique Annales de la Société géologique de Belgique , 1874 .

[2]  Rollin T. Chamberlin,et al.  The Appalachian Folds of Central Pennsylvania , 1910, The Journal of Geology.

[3]  C. D. A. Dahlstrom Balanced cross sections , 1969 .

[4]  John G. Sclater,et al.  Continental stretching: An explanation of the Post-Mid-Cretaceous subsidence of the central North Sea Basin , 1980 .

[5]  A. Whiteman,et al.  Geological atlas of western and central Europe , 1983 .

[6]  Craig B. Forster,et al.  The Influence of Groundwater Flow on Thermal Regimes in Mountainous Terrain , 1986 .

[7]  E. Jowett Genesis of Kupferschiefer Cu-Ag deposits by convective flow of Rotliegendes brines during Triassic rifting , 1986 .

[8]  E. Jowett,et al.  A Mid‐Triassic paleomagnetic age of the Kupferschiefer mineralization in Poland, based on a revised apparent polar wander path for Europe and Russia , 1987 .

[9]  David W. Hosmer,et al.  Applied Logistic Regression , 1991 .

[10]  D. Vaughan,et al.  The Kupferschiefer; an overview with an appraisal of the different types of mineralization , 1989 .

[11]  P. McCullagh,et al.  Monograph on Statistics and Applied Probability , 1989 .

[12]  Jon E. Olson,et al.  Experimental models of extensional forced folds , 1990 .

[13]  R. Kerrich Perspectives on genetic models for lode gold deposits , 1993 .

[14]  Q. Cheng,et al.  Weights of evidence modeling and weighted logistic regression for mineral potential mapping , 1993 .

[15]  J. Gratier,et al.  Compatibility constraints on folded and faulted strata and calculation of total displacement using computational restoration (UNFOLD program) , 1993 .

[16]  Richard J. Lisle,et al.  Detection of Zones of Abnormal Strains in Structures Using Gaussian Curvature Analysis , 1994 .

[17]  A. Piestrzyński,et al.  An ore genetic model for the Lubin—Sieroszowice mining district, Poland , 1994 .

[18]  D. Rouby Restauration en carte des domaines faillés en extension. Méthode et applications. , 1994 .

[19]  S. Speczik The Kupferschiefer mineralization of Central Europe: New aspects and major areas of future research , 1995 .

[20]  B. Meeting,et al.  Mineral deposits : research and exploration : where do they meet? : proceedings of the Fourth Biennial SGA Meeting, Turku/Finland/11-13 August 1997 , 1997 .

[21]  S. Oszczepalski,et al.  Clay mineralogy, crystallinity, and K-Ar ages of illites within the Polish Zechstein Basin; implications for the age of Kupferschiefer mineralization , 1999 .

[22]  P. H. Karnkowski,et al.  Origin and evolution of the Polish Rotliegend Basin , 1999 .

[23]  S. Oszczepalski,et al.  Origin of the Kupferschiefer polymetallic mineralization in Poland , 1999 .

[24]  Dariusz Przybytek,et al.  "Atlas Śląska Dolnego i Opolskiego", pod red. W. Pawlaka, Wrocław 1997, Uniwersytet Wrocławski - Pracownia Atlasu Dolnego Śląska, Polska Akademia Nauk - Oddział we Wrocławiu, ss. 117 : [recenzja] / Dariusz Przybytek, Grzegorz Strauchold. , 2000 .

[25]  M. Withjack,et al.  Active Normal Faulting Beneath a Salt Layer: An Experimental Study of Deformation Patterns in the Cover Sequence , 2000 .

[26]  P. Thore,et al.  Modelling of stochastic faults and fault networks in a structural uncertainty study , 2001, Petroleum Geoscience.

[27]  A. Roberts Curvature attributes and their application to 3D interpreted horizons , 2001 .

[28]  S. Oszczepalski,et al.  Variable alteration of organic matter in relation to metal zoning at the Rote Fäule front (Lubin-Sieroszowice mining district, SW Poland) , 2001 .

[29]  C.C. de Araujo,et al.  Multicriteria Geologic Data Analysis for Mineral Favorability Mapping: Application to a Metal Sulphide Mineralized Area, Ribeira Valley Metallogenic Province, Brazil , 2002 .

[30]  Adam Głuszek,et al.  Redbed-type gold mineralisation, Kupferschiefer, south-west Poland , 2002 .

[31]  P. H. Karnkowski,et al.  COPPER MINERALIZATION OF THE POLISH KUPFERSCHIEFER: A PROPOSED BASEMENT FAULT-FRACTURE SYSTEM OF FLUID FLOW , 2003 .

[32]  J. Wees,et al.  Tectonic subsidence modelling of the Polish Basin in the light of new data on crustal structure and magnitude of inversion , 2003 .

[33]  L. F. Martha,et al.  A FINITE ELEMENT APPROACH FOR GEOLOGICAL SECTION RECONSTRUCTION , 2003 .

[34]  Stuart Hardy,et al.  Discrete‐element modelling of extensional fault‐propagation folding above rigid basement fault blocks , 2004 .

[35]  M. Wolfgramm,et al.  Fluid systems and mineralization in the north German and Polish basin , 2004 .

[36]  M. Scheck‐Wenderoth,et al.  Different modes of the Late Cretaceous–Early Tertiary inversion in the North German and Polish basins , 2005 .

[37]  P. Muchez,et al.  7: Extensional tectonics and the timing and formation of basin-hosted deposits in Europe , 2005 .

[38]  J. Lamarche,et al.  Crustal memory and basin evolution in the Central European Basin System—new insights from a 3D structural model , 2005 .

[39]  K. H. Wedepohl,et al.  The composition of brines in the early diagenetic mineralization of the Permian Kupferschiefer in Germany , 2006 .

[40]  F. Maerten,et al.  Chronologic modeling of faulted and fractured reservoirs using geomechanically based restoration: Technique and industry applications , 2006 .

[41]  A. J. Strieder,et al.  Mineral-Potential Mapping: A Comparison of Weights-of-Evidence and Fuzzy Methods , 2006 .

[42]  I. Moretti,et al.  KINE3D: a New 3d Restoration Method Based on a Mixed Approach Linking Geometry and Geomechanics , 2006 .

[43]  Richard H. Groshong,et al.  3-D structural geology , 2006 .

[44]  R. Groshong 3-D Structural Geology: A Practical Guide to Quantitative Surface and Subsurface Map Interpretation , 2006 .

[45]  Z. Shipton,et al.  What do you think this is? "Conceptual uncertainty" in geoscience interpretation , 2007 .

[46]  I. Moretti,et al.  The Use of Surface Restoration in Foothills Exploration: Theory and Application to the Sub-Andean Zone of Bolivia , 2007 .

[47]  J. Gouin Mode de genèse et valorisation des minerais de type black shales : cas du Kupferschiefer (Pologne) et des schistes noirs de Talvivaara (Finlande) , 2008 .

[48]  New basin modelling results from the Polish part of the Central European Basin system: implications for the Late Cretaceous–Early Paleogene structural inversion , 2008 .

[49]  Andrew Jarvis,et al.  Hole-filled SRTM for the globe Version 4 , 2008 .

[50]  J. Mucha,et al.  The red-bed-type precious metal deposit in the Sieroszowice-Polkowice copper mining district, SW Poland , 2008 .

[51]  I. Moretti,et al.  Working in complex areas: New restoration workflow based on quality control, 2D and 3D restorations , 2008 .

[52]  Q. Cheng Non-Linear Theory and Power-Law Models for Information Integration and Mineral Resources Quantitative Assessments , 2008 .

[53]  J. Lefebvre Les gisements stratiformes en roche sédimentaire d'Europe centrale (Kupferschiefer) et de la ceinture cuprifère du Zaïre et de Zambie , 2009 .

[54]  Marco Scutari,et al.  Learning Bayesian Networks with the bnlearn R Package , 2009, 0908.3817.

[55]  Pierre Muron,et al.  Insights into the mechanisms of fault-related folding provided by volumetric structural restorations using spatially varying mechanical constraints , 2009 .

[56]  M. Titeux Restauration et incertitudes structurales: changement d'échelles des propriétés mécaniques et gestion de la tectonique salifère , 2009 .

[57]  G. Caumon,et al.  Surface-Based 3D Modeling of Geological Structures , 2009 .

[58]  F. Horowitz,et al.  Towards incorporating uncertainty of structural data in 3D geological inversion , 2010 .

[59]  R. Littke,et al.  New constraints on the Middle Palaeozoic to Cenozoic burial and thermal history of the Holy Cross Mts. (Central Poland): results from numerical modelling , 2010 .

[60]  Guillaume Caumon,et al.  Towards Stochastic Time-Varying Geological Modeling , 2010 .

[61]  C. Jackson,et al.  Normal fault growth and fault-related folding in a salt-influenced rift basin: South Viking Graben, offshore Norway , 2010 .

[62]  T. Wagner,et al.  The role of the Kupferschiefer in the formation of hydrothermal base metal mineralization in the Spessart ore district, Germany: insight from detailed sulfur isotope studies , 2010 .

[63]  Guillaume Caumon,et al.  Balanced restoration of geological volumes with relaxed meshing constraints , 2010, Comput. Geosci..

[64]  M. Hitzman,et al.  Formation of Sedimentary Rock-Hosted Stratiform Copper Deposits through Earth History , 2010 .

[65]  P. Krzywiec Triassic-Jurassic evolution of the Pomeranian segment of the Mid-Polish Trough — basement tectonics and subsidence patterns (reply) , 2010 .

[66]  P. Krzywiec,et al.  Uplift and late orogenic deformation of the Central European Variscan belt as revealed by sediment provenance and structural record in the Carboniferous foreland basin of western Poland , 2010 .

[67]  B. Lévy,et al.  Stochastic simulations of fault networks in 3D structural modeling. , 2010 .

[68]  Renguang Zuo,et al.  Support vector machine: A tool for mapping mineral prospectivity , 2011, Comput. Geosci..

[69]  H. Schaeben Comparison of Mathematical Methods of Potential Modeling , 2011, Mathematical Geosciences.

[70]  Oskar Vidal-Royo,et al.  Multiple mechanisms driving detachment folding as deduced from 3D reconstruction and geomechanical restoration: the Pico del Águila anticline (External Sierras, Southern Pyrenees) , 2012 .

[71]  D. Symons,et al.  Paleomagnetism of the Cu–Zn–Pb-bearing Kupferschiefer black shale (Upper Permian) at Sangerhausen, Germany , 2011 .

[72]  Guillaume Caumon,et al.  Handling natural complexity in three-dimensional geomechanical restoration, with application to the recent evolution of the outer fold and thrust belt, deep-water Niger Delta , 2013 .

[73]  S. Brocklehurst,et al.  Mobile evaporite controls on the structural style and evolution of rift basins: Danish Central Graben, North Sea , 2013 .

[74]  D. Gao Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications , 2013 .

[75]  H. Schaeben Potential modeling: conditional independence matters , 2014 .