In the optimum design of the block adaptive FIR digital filter

A general optimum block adaptive (GOBA) algorithm for adaptive FIR (finite impulse response) filtering is presented. In this algorithm, the correction terms for the filter coefficients in each block, instead of the convergence factors, are optimized in a least squares sense. There are no constraints on the block length L and the filter tap number N. It is shown that the GOBA algorithm is reduced to the normalized LMS algorithm when L>or=N. The convergence of the GOBA algorithm can be assured if the correlation matrix of the input signal is positive definite. Computer simulations based on an efficient computing procedure confirm that the GOBA algorithm achieves faster convergence with slightly degraded convergence accuracy in stationary environments and better weight tracking capability in nonstationary environments as compared to existing block adaptive algorithms with no constraints on L and N. >

[1]  H. Voelcker,et al.  Digital filtering via block recursion , 1970 .

[2]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[3]  B. Widrow,et al.  Adaptive noise cancelling: Principles and applications , 1975 .

[4]  T. Claasen,et al.  Comparison of the convergence of two algorithms for adaptive FIR digital filters , 1981 .

[5]  J. Nagumo,et al.  A learning method for system identification , 1967, IEEE Transactions on Automatic Control.

[6]  N. Bershad Behavior of the ε-normalized LMS algorithm with Gaussian inputs , 1987, IEEE Trans. Acoust. Speech Signal Process..

[7]  Chong Kwan Un,et al.  A reduced structure of the frequency-domain block LMS adaptive digital filter , 1984 .

[8]  George Carayannis,et al.  A fast sequential algorithm for least-squares filtering and prediction , 1983 .

[9]  C. Barnes,et al.  Block-shift invariance and block implementation of discrete-time filters , 1980 .

[10]  Wasfy B. Mikhael,et al.  A Fast Block FIR Adaptive Digital Filtering Algorithm with Individual Adaption of Parameters , 1989 .

[11]  T. Kailath,et al.  Fast, recursive-least-squares transversal filters for adaptive filtering , 1984 .

[12]  Bernard Widrow,et al.  Adaptive Signal Processing , 1985 .

[13]  Sanjit K. Mitra,et al.  Block implementation of adaptive digital filters , 1981 .

[14]  Jia-Sien Soo,et al.  A multistep size (MSS) frequency domain adaptive filter , 1991, IEEE Trans. Signal Process..

[15]  W. Mikhael,et al.  Fast algorithms for block FIR adaptive digital filtering , 1987 .

[16]  Neil J. Bershad,et al.  Analysis of the normalized LMS algorithm with Gaussian inputs , 1986, IEEE Trans. Acoust. Speech Signal Process..

[17]  C. Burrus Block implementation of digital filters , 1971 .

[18]  P. van Gerwen,et al.  Digital echo cancellation for baseband data transmission , 1979 .

[19]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[20]  M. Sondhi,et al.  New results on the performance of a well-known class of adaptive filters , 1976, Proceedings of the IEEE.

[21]  B. Anderson,et al.  Performance of adaptive estimation algorithms in dependent random environments , 1980 .

[22]  J.C. Lee,et al.  A frequency-weighted block LMS algorithm and its application to speech processing , 1985, Proceedings of the IEEE.

[23]  Richard W. Harris,et al.  A variable step (VS) adaptive filter algorithm , 1986, IEEE Trans. Acoust. Speech Signal Process..

[24]  Lennart Ljung,et al.  Application of Fast Kalman Estimation to Adaptive Equalization , 1978, IEEE Trans. Commun..

[25]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[26]  S. Mitra,et al.  A unified approach to time- and frequency-domain realization of FIR adaptive digital filters , 1983 .

[27]  Jont B. Allen,et al.  FIR system modeling and identification in the presence of noise and with band-limited inputs , 1978 .

[28]  Colin F. N. Cowan Performance Comparisions of finite linear adaptive filters , 1987 .

[29]  S. T. Alexander,et al.  Channel Equalization Using Adaptive Lattice Algorithms , 1979, IEEE Trans. Commun..

[30]  John M. Cioffi The block-processing FTF adaptive algorithm , 1986, IEEE Trans. Acoust. Speech Signal Process..

[31]  Chin-Liang Wang,et al.  Comments on "A fast block FIR adaptive digital filtering algorithm with individual adaptation of parameters , 1992 .

[32]  L. Ljung,et al.  Fast calculation of gain matrices for recursive estimation schemes , 1978 .

[33]  B. Widrow,et al.  Stationary and nonstationary learning characteristics of the LMS adaptive filter , 1976, Proceedings of the IEEE.