From Multivariate Skewed Distributions to Copulas
暂无分享,去创建一个
[1] T. Kollo,et al. Risk Modeling for Future Cash Flow Using Skew t-Copula , 2011 .
[2] Helle Visk,et al. On the Parameter Estimation of the Asymmetric Multivariate Laplace Distribution , 2009 .
[3] T. Kollo. Multivariate skewness and kurtosis measures with an application in ICA , 2008 .
[4] T. Kollo,et al. Advanced Multivariate Statistics with Matrices , 2005 .
[5] Arjun K. Gupta,et al. The Closed Skew-Normal Distribution , 2004 .
[6] Marc G. Genton,et al. Skew-elliptical distributions and their applications : a journey beyond normality , 2004 .
[7] Arjun K. Gupta,et al. A multivariate skew normal distribution , 2004 .
[8] Samuel Kotz,et al. Multivariate T-Distributions and Their Applications , 2004 .
[9] A. Azzalini,et al. Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.
[10] R. Nelsen. An Introduction to Copulas , 1998 .
[11] A. Azzalini,et al. The multivariate skew-normal distribution , 1996 .
[12] Tamás F. Móri,et al. On Multivariate Skewness and Kurtosis , 1994 .
[13] E. C. Macrae. Matrix Derivatives with an Application to an Adaptive Linear Decision Problem , 1974 .
[14] K. Mardia. Measures of multivariate skewness and kurtosis with applications , 1970 .
[15] Fabrizio Durante,et al. Copula Theory and Its Applications , 2010 .
[16] Tõnu Kollo,et al. Parameter Estimation and Application of the Multivariate Skew t-Copula , 2010 .
[17] Arjun K. Gupta,et al. Density expansions based on the multivariate skew normal distribution , 2003 .
[18] A. McNeil,et al. KENDALL'S TAU FOR ELLIPTICAL DISTRIBUTIONS ∗ , 2003 .
[19] J. Koziol. A Note on Measures of Multivariate Kurtosis , 1989 .