From Multivariate Skewed Distributions to Copulas

[1]  T. Kollo,et al.  Risk Modeling for Future Cash Flow Using Skew t-Copula , 2011 .

[2]  Helle Visk,et al.  On the Parameter Estimation of the Asymmetric Multivariate Laplace Distribution , 2009 .

[3]  T. Kollo Multivariate skewness and kurtosis measures with an application in ICA , 2008 .

[4]  T. Kollo,et al.  Advanced Multivariate Statistics with Matrices , 2005 .

[5]  Arjun K. Gupta,et al.  The Closed Skew-Normal Distribution , 2004 .

[6]  Marc G. Genton,et al.  Skew-elliptical distributions and their applications : a journey beyond normality , 2004 .

[7]  Arjun K. Gupta,et al.  A multivariate skew normal distribution , 2004 .

[8]  Samuel Kotz,et al.  Multivariate T-Distributions and Their Applications , 2004 .

[9]  A. Azzalini,et al.  Distributions generated by perturbation of symmetry with emphasis on a multivariate skew t‐distribution , 2003, 0911.2342.

[10]  R. Nelsen An Introduction to Copulas , 1998 .

[11]  A. Azzalini,et al.  The multivariate skew-normal distribution , 1996 .

[12]  Tamás F. Móri,et al.  On Multivariate Skewness and Kurtosis , 1994 .

[13]  E. C. Macrae Matrix Derivatives with an Application to an Adaptive Linear Decision Problem , 1974 .

[14]  K. Mardia Measures of multivariate skewness and kurtosis with applications , 1970 .

[15]  Fabrizio Durante,et al.  Copula Theory and Its Applications , 2010 .

[16]  Tõnu Kollo,et al.  Parameter Estimation and Application of the Multivariate Skew t-Copula , 2010 .

[17]  Arjun K. Gupta,et al.  Density expansions based on the multivariate skew normal distribution , 2003 .

[18]  A. McNeil,et al.  KENDALL'S TAU FOR ELLIPTICAL DISTRIBUTIONS ∗ , 2003 .

[19]  J. Koziol A Note on Measures of Multivariate Kurtosis , 1989 .