A simple criterion for extending natural transformations to higher $K$-theory
暂无分享,去创建一个
[1] Gonçalo Tabuada. Products, multiplicative Chern characters, and finite coefficients via Non-commutative motives , 2011, 1101.0731.
[2] Denis-Charles Cisinski,et al. Symmetric monoidal structure on non-commutative motives , 2010, Journal of K-Theory.
[3] Denis-Charles Cisinski,et al. Non-connective K-theory via universal invariants , 2009, Compositio Mathematica.
[4] D. Kaledin,et al. Motivic structures in non-commutative geometry , 2010, 1003.3210.
[5] Gonçalo Tabuada. A universal characterization of the Chern character maps , 2010, 1002.3726.
[6] M. Kontsevich. Notes on Motives in Finite Characteristic , 2007, math/0702206.
[7] A. Neeman,et al. Additivity for derivator K-theory , 2008 .
[8] Gonçalo Tabuada. Higher K-theory via universal invariants , 2007, 0706.2420.
[9] Bernhard Keller,et al. On differential graded categories , 2006, math/0601185.
[10] A. Kuku,et al. Higher Algebraic K-Theory , 2006 .
[11] V. Drinfeld. DG quotients of DG categories , 2002, math/0210114.
[12] M. Bergh,et al. Generators and representability of functors in commutative and noncommutative geometry , 2002, math/0204218.
[13] N. Strickland,et al. MODEL CATEGORIES (Mathematical Surveys and Monographs 63) , 2000 .
[14] J. Loday. Non-commutative Differential Geometry , 1998 .
[15] John D. S. Jones,et al. Bivariant cyclic theory , 1989 .
[16] D. M. Kan,et al. Homotopy Limits, Completions and Localizations , 1987 .
[17] M. Karoubi. Homologie cyclique et K-théorie , 1987 .
[18] K. Herrmann. Die mathematischen Hilfsmittel des Physikers. Von E. Madelung. Mit 20 Textfiguren (Het 4 der „Grundlehren der mathematischen Wissenschaften”.) Berlin, Verlag von Julius Springer, 1922 , 1923 .