A classification of flag-transitive block designs

In this article, we investigate $2$-$(v,k,\lambda)$ designs with $\gcd(r,\lambda)=1$ admitting flag-transitive automorphism groups $G$. We prove that if $G$ is an almost simple group, then such a design belongs to one of the seven infinite families of $2$-designs or it is one of the eleven well-known examples. We describe all these examples of designs. We, in particular, prove that if $\mathcal{D}$ is a symmetric $(v,k,\lambda)$ design with $\gcd(k,\lambda)=1$ admitting a flag-transitive automorphism group $G$, then either $G\leq A\Gamma L_{1}(q)$ for some odd prime power $q$, or $\mathcal{D}$ is a projective space or the unique Hadamard design with parameters $(11,5,2)$.

[1]  Eugenia O’Reilly-Regueiro Biplanes with flag-transitive automorphism groups of almost simple type, with classical socle , 2007 .

[2]  A. Delandtsheer Finite Flag-transitive Linear Spaces with Alternating Socle , 2001 .

[3]  Ashraf Daneshkhah,et al.  Symmetric designs admitting flag-transitive and point-primitive automorphism groups associated to two dimensional projective special groups , 2016, Des. Codes Cryptogr..

[4]  M. Liebeck On the Orders of Maximal Subgroups of the Finite Classical Groups , 1985 .

[5]  Shenglin Zhou,et al.  Flag-transitive Non-symmetric 2-designs with $(r, \lambda)=1$ and Alternating Socle , 2015, Electron. J. Comb..

[6]  P. Cameron Permutation groups , 1996 .

[7]  Heinz Lüneburg,et al.  Some remarks concerning the Ree groups of type (G2) , 1966 .

[8]  Shenglin Zhou,et al.  Sporadic groups and flag-transitive triplanes , 2009 .

[9]  Ulrich Dempwolff Primitive Rank 3 Groups on Symmetric Designs , 2001, Des. Codes Cryptogr..

[11]  Martin W. Liebeck,et al.  The Subgroup Structure of the Finite Classical Groups , 1990 .

[12]  Peter Brown Kleidman The subgroup structure of some finite simple groups , 1987 .

[13]  William M. Kantor,et al.  Classification of 2-transitive symmetric designs , 1985, Graphs Comb..

[14]  Shenglin Zhou,et al.  Flag-transitive non-symmetric 2-designs with (r,λ)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,\lambda )=1$$\e , 2016, Designs, Codes and Cryptography.

[15]  E. Lander Symmetric Designs: An Algebraic Approach , 1983 .

[16]  Eugenia O'Reilly Regueiro On primitivity and reduction for flag-transitive symmetric designs , 2005, J. Comb. Theory A.

[17]  F. Buekenhout,et al.  Finite linear spaces with flag-transitive groups , 1988, J. Comb. Theory, Ser. A.

[18]  Gary M. Seitz,et al.  Flag-Transitive Subgroups of Chevalley Groups , 1973 .

[19]  Eugenia O’Reilly-Regueiro Biplanes with flag-transitive automorphism groups of almost simple type, with exceptional socle of Lie type , 2008 .

[20]  Seyed Hassan Alavi,et al.  Flag-Transitive Block Designs and Finite Simple Exceptional Groups of Lie Type , 2020, Graphs and Combinatorics.

[21]  Seyed Hassan Alavi,et al.  Flag-transitive block designs with prime replication number and almost simple groups , 2019, Des. Codes Cryptogr..

[22]  S. H. Alavi Flag-tranitive block designs and finite exceptional simple groups of Lie type , 2019 .

[23]  Seyed Hassan Alavi,et al.  Almost Simple Groups of Lie Type and Symmetric Designs with $\lambda$ Prime , 2021, Electron. J. Comb..

[24]  Shenglin Zhou,et al.  Non-symmetric 2-designs admitting a two-dimensional projective linear group , 2018, Des. Codes Cryptogr..

[25]  S. H. Alavi,et al.  Flag-transitive block designs and unitary groups , 2019, Monatshefte für Mathematik.

[26]  Alan R. Prince,et al.  Biplanes and near biplanes , 1991 .

[27]  Jan Saxl,et al.  On Finite Linear Spaces with Almost Simple Flag-Transitive Automorphism Groups , 2002, J. Comb. Theory, Ser. A.

[28]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .

[29]  Shenglin Zhou,et al.  Affine groups and flag-transitive triplanes , 2012 .

[30]  Shenglin Zhou,et al.  Alternating groups and flag-transitive triplanes , 2010, Des. Codes Cryptogr..

[31]  S. H. Alavi,et al.  Flag-transitive Point-primitive symmetric designs and three dimensional projective special linear groups , 2016 .

[32]  Paul-Hermann Zieschang,et al.  Flag transitive automorphism groups of 2-designs with (γ, λ) = 1 , 1988 .

[33]  Cheryl E. Praeger,et al.  On the O'Nan-Scott theorem for finite primitive permutation groups , 1988, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.

[34]  Yajie Wang,et al.  Flag-transitive Non-symmetric 2-designs with $(r, \lambda)=1$ and Alternating Socle , 2015, Electron. J. Comb..

[35]  P. Dembowski Finite geometries , 1997 .

[36]  William M. Kantor,et al.  Homogeneous Designs and Geometric Lattices , 1985, J. Comb. Theory, Ser. A.

[37]  Cheryl E. Praeger,et al.  On flag-transitive 2-(v, k, 2) designs , 2021, J. Comb. Theory, Ser. A.

[38]  M. Liebeck,et al.  On the 2‐Closures of Finite Permutation Groups , 1988 .

[39]  M. Biliotti,et al.  Nonsymmetric 2‐ (v,k,λ) designs, with (r,λ)   = 1, admitting a solvable flag‐transitive automorphism group of affine type , 2019, Journal of Combinatorial Designs.

[40]  Martin W. Liebeck,et al.  The Affine Permutation Groups of Rank Three , 1987 .

[41]  Xiaoqin Zhan,et al.  Comments on “Flag-transitive block designs and unitary groups” , 2021, Monatshefte für Mathematik.

[42]  Seyed Hassan Alavi,et al.  Correction to: Flag-transitive block designs and unitary groups , 2021, Monatshefte für Mathematik.

[43]  J. Tits Ovoßdes et Groupes de Suzuki , 1962 .

[44]  S. H. Alavi,et al.  Symmetric designs and finite simple exceptional groups of Lie type , 2017, 1702.01257.

[45]  Michael Aschbacher,et al.  On the maximal subgroups of the finite classical groups , 1984 .

[46]  Anka Golemac,et al.  Primitive symmetric designs with up to 2500 points , 2011 .

[47]  Timothy C. Burness,et al.  Large subgroups of simple groups , 2013, 1311.6733.

[48]  Eugenia O'Reilly Regueiro Biplanes with flag-transitive automorphism groups of almost simple type, with alternating or sporadic socle , 2005, Eur. J. Comb..

[49]  Shenglin Zhou,et al.  Exceptional groups of Lie type and flag-transitive triplanes , 2010 .

[50]  Martin W. Liebeck,et al.  The Primitive Permutation Groups of Odd Degree , 1985 .

[51]  Shenglin Zhou,et al.  Flag‐Transitive 2‐ (v,k,λ) Symmetric Designs with Sporadic Socle , 2015 .

[52]  P. B. Kleidman The maximal subgroups of the Chevalley groups G2(q) with q odd , 1988 .

[53]  Shenglin Zhou,et al.  Flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) = 1 and alternating socle , 2015 .

[54]  Shenglin Zhou,et al.  Flag-transitive non-symmetric $2$-designs with $(r,\lambda)=1$ and exceptional groups of Lie type , 2019, 1907.06425.

[55]  W. Kantor Primitive permutation groups of odd degree, and an application to finite projective planes , 1987 .

[56]  M. Biliotti,et al.  On Flag‐Transitive Symmetric Designs of Affine Type , 2017 .

[57]  Robert Winter,et al.  Dimensional crossover in Sr2RuO4 within a slave-boson mean-field theory , 2008, 0812.3731.

[58]  Shenglin Zhou,et al.  Finite classical groups and flag-transitive triplanes , 2009, Discret. Math..

[59]  D. Holt,et al.  The Maximal Subgroups of the Low-Dimensional Finite Classical Groups , 2013 .