A classification of flag-transitive block designs
暂无分享,去创建一个
Seyed Hassan Alavi | Ashraf Daneshkhah | Fatemeh Mouseli | S. H. Alavi | A. Daneshkhah | Fatemeh Mouseli
[1] Eugenia O’Reilly-Regueiro. Biplanes with flag-transitive automorphism groups of almost simple type, with classical socle , 2007 .
[2] A. Delandtsheer. Finite Flag-transitive Linear Spaces with Alternating Socle , 2001 .
[3] Ashraf Daneshkhah,et al. Symmetric designs admitting flag-transitive and point-primitive automorphism groups associated to two dimensional projective special groups , 2016, Des. Codes Cryptogr..
[4] M. Liebeck. On the Orders of Maximal Subgroups of the Finite Classical Groups , 1985 .
[5] Shenglin Zhou,et al. Flag-transitive Non-symmetric 2-designs with $(r, \lambda)=1$ and Alternating Socle , 2015, Electron. J. Comb..
[6] P. Cameron. Permutation groups , 1996 .
[7] Heinz Lüneburg,et al. Some remarks concerning the Ree groups of type (G2) , 1966 .
[8] Shenglin Zhou,et al. Sporadic groups and flag-transitive triplanes , 2009 .
[9] Ulrich Dempwolff. Primitive Rank 3 Groups on Symmetric Designs , 2001, Des. Codes Cryptogr..
[11] Martin W. Liebeck,et al. The Subgroup Structure of the Finite Classical Groups , 1990 .
[12] Peter Brown Kleidman. The subgroup structure of some finite simple groups , 1987 .
[13] William M. Kantor,et al. Classification of 2-transitive symmetric designs , 1985, Graphs Comb..
[14] Shenglin Zhou,et al. Flag-transitive non-symmetric 2-designs with (r,λ)=1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,\lambda )=1$$\e , 2016, Designs, Codes and Cryptography.
[15] E. Lander. Symmetric Designs: An Algebraic Approach , 1983 .
[16] Eugenia O'Reilly Regueiro. On primitivity and reduction for flag-transitive symmetric designs , 2005, J. Comb. Theory A.
[17] F. Buekenhout,et al. Finite linear spaces with flag-transitive groups , 1988, J. Comb. Theory, Ser. A.
[18] Gary M. Seitz,et al. Flag-Transitive Subgroups of Chevalley Groups , 1973 .
[19] Eugenia O’Reilly-Regueiro. Biplanes with flag-transitive automorphism groups of almost simple type, with exceptional socle of Lie type , 2008 .
[20] Seyed Hassan Alavi,et al. Flag-Transitive Block Designs and Finite Simple Exceptional Groups of Lie Type , 2020, Graphs and Combinatorics.
[21] Seyed Hassan Alavi,et al. Flag-transitive block designs with prime replication number and almost simple groups , 2019, Des. Codes Cryptogr..
[22] S. H. Alavi. Flag-tranitive block designs and finite exceptional simple groups of Lie type , 2019 .
[23] Seyed Hassan Alavi,et al. Almost Simple Groups of Lie Type and Symmetric Designs with $\lambda$ Prime , 2021, Electron. J. Comb..
[24] Shenglin Zhou,et al. Non-symmetric 2-designs admitting a two-dimensional projective linear group , 2018, Des. Codes Cryptogr..
[25] S. H. Alavi,et al. Flag-transitive block designs and unitary groups , 2019, Monatshefte für Mathematik.
[26] Alan R. Prince,et al. Biplanes and near biplanes , 1991 .
[27] Jan Saxl,et al. On Finite Linear Spaces with Almost Simple Flag-Transitive Automorphism Groups , 2002, J. Comb. Theory, Ser. A.
[28] J. Conway,et al. ATLAS of Finite Groups , 1985 .
[29] Shenglin Zhou,et al. Affine groups and flag-transitive triplanes , 2012 .
[30] Shenglin Zhou,et al. Alternating groups and flag-transitive triplanes , 2010, Des. Codes Cryptogr..
[31] S. H. Alavi,et al. Flag-transitive Point-primitive symmetric designs and three dimensional projective special linear groups , 2016 .
[32] Paul-Hermann Zieschang,et al. Flag transitive automorphism groups of 2-designs with (γ, λ) = 1 , 1988 .
[33] Cheryl E. Praeger,et al. On the O'Nan-Scott theorem for finite primitive permutation groups , 1988, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics.
[34] Yajie Wang,et al. Flag-transitive Non-symmetric 2-designs with $(r, \lambda)=1$ and Alternating Socle , 2015, Electron. J. Comb..
[35] P. Dembowski. Finite geometries , 1997 .
[36] William M. Kantor,et al. Homogeneous Designs and Geometric Lattices , 1985, J. Comb. Theory, Ser. A.
[37] Cheryl E. Praeger,et al. On flag-transitive 2-(v, k, 2) designs , 2021, J. Comb. Theory, Ser. A.
[38] M. Liebeck,et al. On the 2‐Closures of Finite Permutation Groups , 1988 .
[39] M. Biliotti,et al. Nonsymmetric 2‐ (v,k,λ) designs, with (r,λ) = 1, admitting a solvable flag‐transitive automorphism group of affine type , 2019, Journal of Combinatorial Designs.
[40] Martin W. Liebeck,et al. The Affine Permutation Groups of Rank Three , 1987 .
[41] Xiaoqin Zhan,et al. Comments on “Flag-transitive block designs and unitary groups” , 2021, Monatshefte für Mathematik.
[42] Seyed Hassan Alavi,et al. Correction to: Flag-transitive block designs and unitary groups , 2021, Monatshefte für Mathematik.
[43] J. Tits. Ovoßdes et Groupes de Suzuki , 1962 .
[44] S. H. Alavi,et al. Symmetric designs and finite simple exceptional groups of Lie type , 2017, 1702.01257.
[45] Michael Aschbacher,et al. On the maximal subgroups of the finite classical groups , 1984 .
[46] Anka Golemac,et al. Primitive symmetric designs with up to 2500 points , 2011 .
[47] Timothy C. Burness,et al. Large subgroups of simple groups , 2013, 1311.6733.
[48] Eugenia O'Reilly Regueiro. Biplanes with flag-transitive automorphism groups of almost simple type, with alternating or sporadic socle , 2005, Eur. J. Comb..
[49] Shenglin Zhou,et al. Exceptional groups of Lie type and flag-transitive triplanes , 2010 .
[50] Martin W. Liebeck,et al. The Primitive Permutation Groups of Odd Degree , 1985 .
[51] Shenglin Zhou,et al. Flag‐Transitive 2‐ (v,k,λ) Symmetric Designs with Sporadic Socle , 2015 .
[52] P. B. Kleidman. The maximal subgroups of the Chevalley groups G2(q) with q odd , 1988 .
[53] Shenglin Zhou,et al. Flag-transitive 2-(v, k, λ) symmetric designs with (k, λ) = 1 and alternating socle , 2015 .
[54] Shenglin Zhou,et al. Flag-transitive non-symmetric $2$-designs with $(r,\lambda)=1$ and exceptional groups of Lie type , 2019, 1907.06425.
[55] W. Kantor. Primitive permutation groups of odd degree, and an application to finite projective planes , 1987 .
[56] M. Biliotti,et al. On Flag‐Transitive Symmetric Designs of Affine Type , 2017 .
[57] Robert Winter,et al. Dimensional crossover in Sr2RuO4 within a slave-boson mean-field theory , 2008, 0812.3731.
[58] Shenglin Zhou,et al. Finite classical groups and flag-transitive triplanes , 2009, Discret. Math..
[59] D. Holt,et al. The Maximal Subgroups of the Low-Dimensional Finite Classical Groups , 2013 .