The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) Data: Algorithm Description

Abstract This work describes the algorithms used for the fully automated retrieval of profiles of particulate extinction coefficients from the attenuated backscatter data acquired by the lidar on board the Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft. The close interaction of the Hybrid Extinction Retrieval Algorithms (HERA) with the preceding processes that detect and classify atmospheric features (i.e., cloud and aerosol layers) is described within the context of the analysis of measurements from scenes of varying complexity. Two main components compose HERA: a top-level algorithm that selects the analysis pathway, the order of processing, and the analysis parameters, depending on the nature and spatial extent of the atmospheric features to be processed; and a profile solver or “extinction engine,” whose task it is to retrieve profiles of particulate extinction and backscatter coefficients from specified sections of an atmospheric scene defined by the top-level alg...

[1]  P. Davis The analysis of lidar signatures of cirrus clouds. , 1969, Applied optics.

[2]  J. Spinhirne,et al.  Aerosol and cloud optical depth from GLAS: Results and verification for an October 2003 California fire smoke case , 2005 .

[3]  David M. Winker,et al.  An assessment of the on-orbit performance of the CALIPSO wide field camera , 2007, SPIE Remote Sensing.

[4]  O. Chomette,et al.  Retrieval of cloud emissivity and particle size frame of the CALIPSO mission , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[5]  David M. Winker,et al.  The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance , 2009 .

[6]  D. Winker,et al.  CALIPSO Lidar Description and Performance Assessment , 2009 .

[7]  David M. Winker,et al.  Fully Automated Detection of Cloud and Aerosol Layers in the CALIPSO Lidar Measurements , 2009 .

[8]  Walter Hitschfeld,et al.  ERRORS INHERENT IN THE RADAR MEASUREMENT OF RAINFALL AT ATTENUATING WAVELENGTHS , 1954 .

[9]  William Viezee,et al.  Lidar Observations of Airfield Approach Conditions:An Exploratory Study , 1969 .

[10]  W. Elford,et al.  A 12-month study of aerosols below 60 km , 1971 .

[11]  Alexander Smirnov,et al.  Ground-Based Lidar Measurements of Aerosols During ACE-2 Instrument Description, Results, and Comparisons with Other Ground-Based and Airborne Measurements , 2000 .

[12]  C. Platt,et al.  Remote Sounding of High Clouds: I. Calculation of Visible and Infrared Optical Properties from Lidar and Radiometer Measurements , 1979 .

[13]  Kenneth Sassen,et al.  Subvisual-Thin Cirrus Lidar Dataset for Satellite Verification and Climatological Research , 1992 .

[14]  Michael G. Bosilovich,et al.  Documentation and Validation of the Goddard Earth Observing System (GEOS) Data Assimilation System, Version 4 , 2005 .

[15]  A. Ansmann,et al.  Aerosol lidar intercomparison in the framework of the EARLINET project. 3. Raman lidar algorithm for aerosol extinction, backscatter, and lidar ratio. , 2004, Applied optics.

[16]  K. Powell The Development of the CALIPSO LiDAR Simulator , 2005 .

[17]  Oded Ben-Dov,et al.  Application of the Lidar to Air Pollution Measurements , 1967 .

[18]  David M. Winker,et al.  CALIPSO Lidar Calibration Algorithms. Part I: Nighttime 532-nm Parallel Channel and 532-nm Perpendicular Channel , 2009 .

[19]  C. Platt,et al.  Lidar and Radiometric Observations of Cirrus Clouds , 1973 .

[20]  Benjamin M. Herman,et al.  Determination of aerosol height distributions by lidar , 1972 .

[21]  S. Young,et al.  Analysis of lidar backscatter profiles in optically thin clouds. , 1995, Applied optics.

[22]  Graeme L. Stephens,et al.  Toward retrieving properties of the tenuous atmosphere using space‐based lidar measurements , 2001 .

[23]  J. Klett Stable analytical inversion solution for processing lidar returns. , 1981, Applied optics.

[24]  David M. Winker,et al.  An overview of LITE: NASA's Lidar In-space Technology Experiment , 1996, Proc. IEEE.

[25]  D. Winker,et al.  Initial performance assessment of CALIOP , 2007 .

[26]  A. G. Azpeitia,et al.  Introduction to Numerical Analysis. , 1968 .

[27]  G. Stephens,et al.  Cirrus cloud optical, microphysical, and radiative properties observed during the CRYSTAL-FACE experiment: A lidar-radar retrieval system , 2005 .

[28]  J. Klett Lidar inversion with variable backscatter/extinction ratios. , 1985, Applied optics.

[29]  K. Bartusek,et al.  Lidar observations of tropospheric aerosols , 1972 .

[30]  F. G. Fernald Analysis of atmospheric lidar observations: some comments. , 1984, Applied optics.

[31]  David M. Winker,et al.  Accounting for multiple scattering in retrievals from space lidar , 2003, International Workshop on Lidar Multiple Scattering Experiments.

[32]  Jennifer M. Comstock,et al.  Retrieval of Cirrus Cloud Radiative and Backscattering Properties Using Combined Lidar and Infrared Radiometer (LIRAD) Measurements , 2001 .

[33]  David M. Winker,et al.  The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds , 2003, SPIE Asia-Pacific Remote Sensing.

[34]  Brent N. Holben,et al.  Lidar Observations of Tropospheric Aerosols Over Northeastern South Africa During the Arrex and Safari-2000 Dry Season Experiments , 2003 .

[35]  E. O'connor,et al.  The CloudSat mission and the A-train: a new dimension of space-based observations of clouds and precipitation , 2002 .

[36]  Arnold Neumaier,et al.  Introduction to Numerical Analysis , 2001 .

[37]  D. Winker,et al.  The CALIPSO Automated Aerosol Classification and Lidar Ratio Selection Algorithm , 2009 .

[38]  L. Elterman,et al.  Aerosol measurements in the troposphere and stratosphere. , 1966, Applied optics.