Big Earth Data science: an information framework for a sustainable planet

ABSTRACT The digital transformation of our society coupled with the increasing exploitation of natural resources makes sustainability challenges more complex and dynamic than ever before. These changes will unlikely stop or even decelerate in the near future. There is an urgent need for a new scientific approach and an advanced form of evidence-based decision-making towards the benefit of society, the economy, and the environment. To understand the impacts and interrelationships between humans as a society and natural Earth system processes, we propose a new engineering discipline, Big Earth Data science. This science is called to provide the methodologies and tools to generate knowledge from diverse, numerous, and complex data sources necessary to ensure a sustainable human society essential for the preservation of planet Earth. Big Earth Data science aims at utilizing data from Earth observation and social sensing and develop theories for understanding the mechanisms of how such a social-physical system operates and evolves. The manuscript introduces the universe of discourse characterizing this new science, its foundational paradigms and methodologies, and a possible technological framework to be implemented by applying an ecosystem approach. CASEarth and GEOSS are presented as examples of international implementation attempts. Conclusions discuss important challenges and collaboration opportunities.

[1]  Stefano Nativi,et al.  A view-based model of data-cube to support big earth data systems interoperability , 2017 .

[2]  Sabina Jeschke,et al.  Smart Cities: Foundations, Principles, and Applications , 2017 .

[3]  David M. Mark,et al.  Next-Generation Digital Earth: A position paper from the Vespucci Initiative for the Advancement of Geographic Information Science , 2008, Int. J. Spatial Data Infrastructures Res..

[4]  Huadong Guo,et al.  Big Earth Data from space: a new engine for Earth science , 2016 .

[5]  Slinger Jansen,et al.  Defining Software Ecosystems: A Survey of Software Platforms and Business Network Governance , 2013, IWSECO@ICSOB.

[6]  Demetrios G. Sampson,et al.  Digital Systems for Open Access to Formal and Informal Learning , 2014 .

[7]  Stefano Nativi,et al.  Integrative Research: The EuroGEOSS Experience , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[8]  Joan Masó-Pau,et al.  Paving the Way to Increased Interoperability of Earth Observations Data Cubes , 2019, Data.

[9]  S. Funtowicz,et al.  Science for the Post-Normal Age , 1993, Commonplace.

[10]  Bernadette Farias Lóscio,et al.  Investigations into Data Ecosystems: a systematic mapping study , 2019, Knowl. Inf. Syst..

[11]  Leonard Fink,et al.  Big Data and Artificial Intelligence , 2017, Intelligent Connectivity.

[12]  J. Dijck,et al.  The Platform Society: Public Values in a Connective World , 2018 .

[13]  Gilbertto Prado,et al.  O prazer da imagem , 2019 .

[14]  M. Goodchild GIScience, Geography, Form, and Process , 2004 .

[15]  Vasant Dhar,et al.  Data science and prediction , 2012, CACM.

[16]  Katherine Anderson,et al.  Earth observation in service of the 2030 Agenda for Sustainable Development , 2017, Geo spatial Inf. Sci..

[17]  Stefano Nativi,et al.  Earth Science Infrastructures Interoperability: The Brokering Approach , 2013, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[18]  Norjihan Abdul Ghani,et al.  Social media big data analytics: A survey , 2019, Comput. Hum. Behav..

[19]  Hao Jiang,et al.  Big Earth Data: a new challenge and opportunity for Digital Earth’s development , 2017, Int. J. Digit. Earth.

[20]  Allen Newell,et al.  Computer science as empirical inquiry: symbols and search , 1976, CACM.

[21]  Viktor Mayer-Schnberger,et al.  Big Data: A Revolution That Will Transform How We Live, Work, and Think , 2013 .

[22]  J. R. Ravets,et al.  Post-Normal Science , 2006 .

[23]  Rogério F. da Silva,et al.  The Challenge of Evaluating Virtual Communities of Practice: A Systematic Mapping Study , 2020, Interdisciplinary Journal of Information, Knowledge, and Management.

[24]  Stefano Nativi,et al.  Big Data challenges in building the Global Earth Observation System of Systems , 2015, Environ. Model. Softw..

[25]  Huadong Guo,et al.  Big Earth data: A new frontier in Earth and information sciences , 2017 .

[26]  Georges Romme,et al.  The Quest for Professionalism: The Case of Management and Entrepreneurship , 2016 .

[27]  Huadong Guo,et al.  Scientific big data and Digital Earth , 2014 .

[28]  Padhraic Smyth,et al.  Science and data science , 2017, Proceedings of the National Academy of Sciences.

[29]  Cassidy R. Sugimoto,et al.  Big data is not a monolith , 2016 .

[30]  B. Wellman Physical Place and Cyberplace: The Rise of Personalized Networking , 2001 .

[31]  Huadong Guo,et al.  Next-generation Digital Earth , 2012, Proceedings of the National Academy of Sciences.

[32]  Peter Leigh,et al.  The ecological crisis, the human condition, and community-based restoration as an instrument for its cure , 2005 .

[33]  Joan Masó-Pau,et al.  Towards integrated essential variables for sustainability , 2020, Int. J. Digit. Earth.

[34]  Sergio Trilles,et al.  Internet of Things in Geospatial Analytics , 2019, ArXiv.

[35]  Wenwen Li,et al.  An Ontology-driven Cyberinfrastructure for Intelligent Spatiotemporal Question Answering and Open Knowledge Discovery , 2019, ISPRS Int. J. Geo Inf..

[36]  Giuditta De Prato,et al.  Artificial Intelligence: A European Perspective , 2018 .

[37]  Sven Schade,et al.  Advancing Digital Earth: beyond the next generation , 2014, Int. J. Digit. Earth.

[38]  Werner Kuhn,et al.  Semantic reference systems , 2003, Int. J. Geogr. Inf. Sci..

[39]  Zoie S Y Wong,et al.  Artificial Intelligence for infectious disease Big Data Analytics. , 2019, Infection, disease & health.

[40]  Stefan Larsson,et al.  A Platform Society , 2018 .

[41]  H. Fromm,et al.  Big Data—Technologies and Potential , 2014 .

[42]  Paolo Mazzetti,et al.  Towards a knowledge base to support global change policy goals , 2019, Int. J. Digit. Earth.

[43]  Jane Mills,et al.  Enhanced data and methods for improving open and free global population grids: putting ‘leaving no one behind’ into practice , 2018, Int. J. Digit. Earth.

[44]  Harry C. Benham,et al.  Information technology adoption: evidence from a voice mail introduction , 1996, CPRS.

[45]  Stefano Nativi,et al.  Exploring the depths of the global earth observation system of systems , 2017 .

[46]  Carlos Granell,et al.  Advancing Science with VGI: Reproducibility and Replicability of Recent Studies using VGI , 2017, Trans. GIS.

[47]  Olha Buchel,et al.  Big Data: A Revolution That Will Transform How We Live, Work, and Think , 2015 .

[48]  Dong Wang,et al.  An egocentric semantic reference system for affordances , 2014, Semantic Web.

[49]  Stefano Nativi,et al.  Discovery, Mediation, and Access Services for Earth Observation Data , 2009, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[50]  S. Funtowicz,et al.  Science for the PostNormal Age , 2001 .

[51]  Natasha D. Schüll,et al.  The Datafication of Health , 2017 .

[52]  Eric Gossett,et al.  Big Data: A Revolution That Will Transform How We Live, Work, and Think , 2015 .

[53]  Guo Huadong,et al.  Steps to the digital Silk Road , 2018, Nature.

[54]  A. Gore The digital earth : Understanding our planet in the 21st century , 1998 .

[55]  Huadong Guo,et al.  Big data drives the development of Earth science , 2017 .

[56]  Waralak V. Siricharoen,et al.  A survey on ontology-driven geographic information systems , 2014, 2014 Fourth International Conference on Digital Information and Communication Technology and its Applications (DICTAP).

[57]  Pierre Soille,et al.  Automated global delineation of human settlements from 40 years of Landsat satellite data archives , 2019, Big Earth Data.

[58]  Un Desa Transforming our world : The 2030 Agenda for Sustainable Development , 2016 .

[59]  Syed Sibte Raza Abidi,et al.  Intelligent health data analytics: A convergence of artificial intelligence and big data , 2019, Healthcare management forum.

[60]  Erik Schultes,et al.  The FAIR Guiding Principles for scientific data management and stewardship , 2016, Scientific Data.

[61]  Michael F. Goodchild,et al.  Geographic information systems and science: today and tomorrow , 2009, Ann. GIS.