Evolutionary origin of amino acid transporter families SLC32, SLC36 and SLC38 and physiological, pathological and therapeutic aspects.

[1]  古谷 未央 Correlation of L-type amino acid transporter 1 and CD98 expression with triple negative breast cancer prognosis , 2012 .

[2]  D. Thwaites,et al.  The SLC36 family of proton‐coupled amino acid transporters and their potential role in drug transport , 2011, British journal of pharmacology.

[3]  A. Kurata,et al.  Divergent expression of L-type amino acid transporter 1 during uterine cervical carcinogenesis. , 2011, Human pathology.

[4]  S. Gu,et al.  Membrane Topological Structure of Neutral System N/A Amino Acid Transporter 4 (SNAT4) Protein* , 2011, The Journal of Biological Chemistry.

[5]  T. Le Bihan,et al.  Shotgun proteomic analysis of the unicellular alga Ostreococcus tauri. , 2011, Journal of proteomics.

[6]  F. Knoflach,et al.  Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes , 2011, Nature Reviews Drug Discovery.

[7]  M. Rask-Andersen,et al.  Trends in the exploitation of novel drug targets , 2011, Nature Reviews Drug Discovery.

[8]  N. Shikano,et al.  Putative Transport Mechanism and Intracellular Fate of Trans-1-Amino-3-18F-Fluorocyclobutanecarboxylic Acid in Human Prostate Cancer , 2011, The Journal of Nuclear Medicine.

[9]  R. Fredriksson,et al.  Identification of SLC38A7 (SNAT7) Protein as a Glutamine Transporter Expressed in Neurons* , 2011, The Journal of Biological Chemistry.

[10]  Robert E. Steele,et al.  Evolutionary crossroads in developmental biology: Cnidaria , 2011, Development.

[11]  C. Grewer,et al.  The C-terminal domain of the neutral amino acid transporter SNAT2 regulates transport activity through voltage-dependent processes. , 2011, The Biochemical journal.

[12]  D. Thwaites,et al.  Amino acid derivatives are substrates or non-transported inhibitors of the amino acid transporter PAT2 (slc36a2) , 2011, Biochimica et biophysica acta.

[13]  H. Schiöth,et al.  The Solute Carrier Families Have a Remarkably Long Evolutionary History with the Majority of the Human Families Present before Divergence of Bilaterian Species , 2010, Molecular biology and evolution.

[14]  H. S. Hundal,et al.  SNAT2 transceptor signalling via mTOR: a role in cell growth and proliferation? , 2011, Frontiers in bioscience.

[15]  D. Meredith,et al.  SLC36A4 (hPAT4) Is a High Affinity Amino Acid Transporter When Expressed in Xenopus laevis Oocytes* , 2010, The Journal of Biological Chemistry.

[16]  H. Xin,et al.  Targeting glutamine metabolism sensitizes melanoma cells to TRAIL-induced death. , 2010, Biochemical and biophysical research communications.

[17]  S. Bröer,et al.  Renal imino acid and glycine transport system ontogeny and involvement in developmental iminoglycinuria. , 2010, The Biochemical journal.

[18]  K. G. Jensen,et al.  5-Hydroxy-L-tryptophan alters gaboxadol pharmacokinetics in rats: involvement of PAT1 and rOat1 in gaboxadol absorption and elimination. , 2010, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[19]  L. Holm,et al.  The Pfam protein families database , 2005, Nucleic Acids Res..

[20]  Stephen J. Smith,et al.  Gabapentin Receptor α2δ-1 Is a Neuronal Thrombospondin Receptor Responsible for Excitatory CNS Synaptogenesis , 2009, Cell.

[21]  Heather L Fiumera,et al.  A Conserved Na+ Binding Site of the Sodium-coupled Neutral Amino Acid Transporter 2 (SNAT2)* , 2009, The Journal of Biological Chemistry.

[22]  Charles Elkan,et al.  The Transporter Classification Database: recent advances , 2008, Nucleic Acids Res..

[23]  Stephen J. Smith,et al.  Gabapentin Receptor alpha 2 delta-1 Is a Neuronal Thrombospondin Receptor Responsible for Excitatory CNS Synaptogenesis , 2009 .

[24]  S. Bröer,et al.  Iminoglycinuria and hyperglycinuria are discrete human phenotypes resulting from complex mutations in proline and glycine transporters. , 2008, The Journal of clinical investigation.

[25]  H. Schiöth,et al.  The solute carrier (SLC) complement of the human genome: Phylogenetic classification reveals four major families , 2008, FEBS letters.

[26]  E. Björnsson Hepatotoxicity associated with antiepileptic drugs , 2008, Acta neurologica Scandinavica.

[27]  Shunsuke Yajima,et al.  Structure and Molecular Mechanism of a Nucleobase–Cation–Symport-1 Family Transporter , 2008, Science.

[28]  B. Larsen,et al.  Transport of amino acids and GABA analogues via the human proton-coupled amino acid transporter, hPAT1: characterization of conditions for affinity and transport experiments in Caco-2 cells. , 2008, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[29]  D. Cascio,et al.  The Crystal Structure of a Sodium Galactose Transporter Reveals Mechanistic Insights into Na+/Sugar Symport , 2008, Science.

[30]  C. Grewer,et al.  Highly Conserved Asparagine 82 Controls the Interaction of Na+ with the Sodium-coupled Neutral Amino Acid Transporter SNAT2* , 2008, Journal of Biological Chemistry.

[31]  B. Sundberg,et al.  The Evolutionary History and Tissue Mapping of Amino Acid Transporters Belonging to Solute Carrier Families SLC32, SLC36, and SLC38 , 2008, Journal of Molecular Neuroscience.

[32]  A. Hada,et al.  Activation of a system A amino acid transporter, ATA1/SLC38A1, in human hepatocellular carcinoma and preneoplastic liver tissues. , 2007, International journal of oncology.

[33]  H. Sontheimer,et al.  Extracellular glutamine is a critical modulator for regulatory volume increase in human glioma cells , 2007, Brain Research.

[34]  P. M. Taylor,et al.  Evidence for allosteric regulation of pH-sensitive System A (SNAT2) and System N (SNAT5) amino acid transporter activity involving a conserved histidine residue. , 2006, The Biochemical journal.

[35]  David E. Gloriam,et al.  The G Protein–Coupled Receptor Subset of the Chicken Genome , 2006, PLoS Comput. Biol..

[36]  Sonja M. Wojcik,et al.  A Shared Vesicular Carrier Allows Synaptic Corelease of GABA and Glycine , 2006, Neuron.

[37]  F. Conti,et al.  The glutamine commute: Lost in the tube? , 2006, Neurochemistry International.

[38]  Yuan-Xiang Pan,et al.  Characterization of the amino acid response element within the human sodium-coupled neutral amino acid transporter 2 (SNAT2) System A transporter gene. , 2006, The Biochemical journal.

[39]  R. Visigalli,et al.  The role of the neutral amino acid transporter SNAT2 in cell volume regulation , 2006, Acta physiologica.

[40]  H. Mcardle,et al.  Expression and adaptive regulation of amino acid transport system A in a placental cell line under amino acid restriction. , 2006, Reproduction.

[41]  G. Cheong Structure and Molecular Mechanism of ATP-dependent Protease , 2006 .

[42]  Milton H. Saier,et al.  TCDB: the Transporter Classification Database for membrane transport protein analyses and information , 2005, Nucleic Acids Res..

[43]  Robert Podolsky,et al.  Up-regulation of the amino acid transporter ATB(0,+) (SLC6A14) in carcinoma of the cervix. , 2006, Gynecologic oncology.

[44]  Eric Gouaux,et al.  Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters , 2005, Nature.

[45]  T. Fujita,et al.  Functional expression and adaptive regulation of Na+-dependent neutral amino acid transporter SNAT2/ATA2 in normal human astrocytes under amino acid starved condition , 2005, Neuroscience Letters.

[46]  B. Cubelos,et al.  Amino acid transporter SNAT5 localizes to glial cells in the rat brain , 2005, Glia.

[47]  H. Christensen On the strategy of kinetic discrimination of amino acid transport systems , 2005, The Journal of Membrane Biology.

[48]  R. Visigalli,et al.  The synthesis of SNAT2 transporters is required for the hypertonic stimulation of system A transport activity. , 2004, Biochimica et biophysica acta.

[49]  H. Daniel,et al.  Substrate specificity and transport mode of the proton-dependent amino acid transporter mPAT2. , 2004, European journal of biochemistry.

[50]  A. Krogh,et al.  A combined transmembrane topology and signal peptide prediction method. , 2004, Journal of molecular biology.

[51]  Jan Albrecht,et al.  Increased expression of a glutamine transporter SNAT3 is a marker of malignant gliomas , 2004, Neuroreport.

[52]  Y. Kanai,et al.  Expression and functional characterization of the system L amino acid transporter in KB human oral epidermoid carcinoma cells. , 2004, Cancer letters.

[53]  B. Mackenzie,et al.  Sodium-coupled neutral amino acid (System N/A) transporters of the SLC38 gene family , 2004, Pflügers Archiv.

[54]  B. Gasnier The SLC32 transporter, a key protein for the synaptic release of inhibitory amino acids , 2004, Pflügers Archiv.

[55]  Robert D. Finn,et al.  The Pfam protein families database , 2004, Nucleic Acids Res..

[56]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[57]  H. Daniel,et al.  A cluster of proton/amino acid transporter genes in the human and mouse genomes. , 2003, Genomics.

[58]  A. Bröer,et al.  Inhibition of glutamine transport depletes glutamate and GABA neurotransmitter pools: further evidence for metabolic compartmentation , 2003, Journal of neurochemistry.

[59]  D. Copenhagen,et al.  The H+-Coupled Electrogenic Lysosomal Amino Acid Transporter LYAAT1 Localizes to the Axon and Plasma Membrane of Hippocampal Neurons , 2003, The Journal of Neuroscience.

[60]  D. Thwaites,et al.  Structure, function and immunolocalization of a proton‐coupled amino acid transporter (hPAT1) in the human intestinal cell line Caco‐2 , 2003, The Journal of physiology.

[61]  E. Babu,et al.  Characterization of the system L amino acid transporter in T24 human bladder carcinoma cells. , 2002, Biochimica et biophysica acta.

[62]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[63]  H. Daniel,et al.  Functional Characterization of Two Novel Mammalian Electrogenic Proton-dependent Amino Acid Cotransporters* , 2002, The Journal of Biological Chemistry.

[64]  K. Osen,et al.  Cell‐specific expression of the glutamine transporter SN1 suggests differences in dependence on the glutamine cycle , 2002, The European journal of neuroscience.

[65]  R. Reimer,et al.  The glutamine commute , 2002, The Journal of cell biology.

[66]  J. Erickson,et al.  Selective up-regulation of system a transporter mRNA in diabetic liver. , 2002, Biochemical and biophysical research communications.

[67]  R. Nicoll,et al.  Glutamine Uptake by Neurons: Interaction of Protons with System A Transporters , 2002, The Journal of Neuroscience.

[68]  R. Martindale,et al.  Cloning and functional characterization of a new subtype of the amino acid transport system N. , 2001, American journal of physiology. Cell physiology.

[69]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[70]  Jean X. Jiang,et al.  Characterization of an N-system Amino Acid Transporter Expressed in Retina and Its Involvement in Glutamine Transport* , 2001, The Journal of Biological Chemistry.

[71]  B. Giros,et al.  Identification and characterization of a lysosomal transporter for small neutral amino acids , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[72]  R. Martindale,et al.  Structure and function of ATA3, a new subtype of amino acid transport system A, primarily expressed in the liver and skeletal muscle. , 2000, Biochimica et biophysica acta.

[73]  V. Ganapathy,et al.  Primary Structure, Genomic Organization, and Functional and Electrogenic Characteristics of Human System N 1, a Na+- and H+-coupled Glutamine Transporter* , 2000, The Journal of Biological Chemistry.

[74]  V. Ganapathy,et al.  Primary structure, functional characteristics and tissue expression pattern of human ATA2, a subtype of amino acid transport system A. , 2000, Biochimica et biophysica acta.

[75]  M. Hediger,et al.  A Novel System A Isoform Mediating Na+/Neutral Amino Acid Cotransport* , 2000, The Journal of Biological Chemistry.

[76]  A. Gray,et al.  Amino acid transport system A resembles system N in sequence but differs in mechanism. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[77]  V. Ganapathy,et al.  Cloning of an Amino Acid Transporter with Functional Characteristics and Tissue Expression Pattern Identical to That of System A* , 2000, The Journal of Biological Chemistry.

[78]  H. Zhu,et al.  Cloning and Functional Identification of a Neuronal Glutamine Transporter* , 2000, The Journal of Biological Chemistry.

[79]  H. Roderick,et al.  Identification and characterization of an amino acid transporter expressed differentially in liver. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[80]  D. Copenhagen,et al.  Molecular Analysis of System N Suggests Novel Physiological Roles in Nitrogen Metabolism and Synaptic Transmission , 1999, Cell.

[81]  M. Rigoulet,et al.  Energetic and Morphological Plasticity of C6 Glioma Cells Grown on 3-D Support; Effect of Transient Glutamine Deprivation , 1998, Journal of bioenergetics and biomembranes.

[82]  B. Giros,et al.  Cloning of a functional vesicular GABA and glycine transporter by screening of genome databases , 1997, FEBS letters.

[83]  E. Jorgensen,et al.  Identification and characterization of the vesicular GABA transporter , 1997, Nature.

[84]  T. Branchek,et al.  Tiagabine, SK&F 89976-A, CI-966, and NNC-711 are selective for the cloned GABA transporter GAT-1. , 1994, European journal of pharmacology.

[85]  D. Thwaites,et al.  Na(+)-independent, H(+)-coupled transepithelial beta-alanine absorption by human intestinal Caco-2 cell monolayers. , 1993, The Journal of biological chemistry.

[86]  J. Ellory,et al.  The identification of neutral amino acid transport systems , 1990, Experimental physiology.

[87]  H. Christensen,et al.  Role of amino acid transport and countertransport in nutrition and metabolism. , 1990, Physiological reviews.

[88]  K. A. Vatz,et al.  The use of N-methylation to direct route of mediated transport of amino acids. , 1965, The Journal of biological chemistry.