Barwise: Abstract Model Theory and Generalized Quantifiers
暂无分享,去创建一个
[1] Perlindström. First Order Predicate Logic with Generalized Quantifiers , 1966 .
[2] E. López-Escobar. An addition to "On defining well-orderings" , 1966 .
[3] K. J. Barwise,et al. Absolute logics and L∞ω☆ , 1972 .
[4] H. Jerome Keisler,et al. Barwise: Infinitary Logic and Admissible Sets , 2004, Bulletin of Symbolic Logic.
[5] Jon Barwise,et al. Some applications of Henkin quantifiers , 1976 .
[6] A. Mostowski. Craig's Interpolation Theorem in Some Extended Systems of Logic , 1979 .
[7] Juha Oikkonen,et al. Hierarchies of Model Theoretic Definability—an Approach to Second Order Logics , 1979 .
[8] E. López-Escobar. On defining well-orderings , 1966 .
[9] R. Fraïssé. Etude de Certains Operateurs Dans Les Classes de Relations, Definis A Partir D'isomorphismes Restreints , 1956 .
[10] Saharon Shelah,et al. Remarks in abstract model theory , 1985, Ann. Pure Appl. Log..
[11] John E. Hutchinson. Model theory via set theory , 1976 .
[12] S. Shelah,et al. Annals of Pure and Applied Logic , 1991 .
[13] H. Keisler. Logic with the quantifier “there exist uncountably many” , 1970 .
[14] Harvey M. Friedman,et al. One hundred and two problems in mathematical logic , 1975, Journal of Symbolic Logic.
[15] G. Fuhrken. Review: Per Lindstrom, First Order Predicate Logic with Generalized Quantifiers , 1969 .
[16] K. Jon Barwise,et al. On branching quantifiers in English , 1979, J. Philos. Log..
[17] K. Jon Barwise,et al. The role of the Omitting Types Theorem in infinitary logic , 1981, Arch. Math. Log..
[18] Graham Anthony Kingston Howes. CHURCH AND STATE IN ENGLAND TODAY (International Seminar on the Tradition of Liberty) , 1997 .
[19] Jon Barwise,et al. A correction to “stationary logic” , 1981 .
[20] K. Jon Barwise,et al. Infinitary logic and admissible sets , 1969, Journal of Symbolic Logic.
[21] C. C. Chang. A note on the two cardinal problem , 1965 .
[22] Solomon Feferman,et al. Two notes on abstract model theory. II. Languages for which, the set of valid sentences is semi-invariantly implicitly definable , 1975 .
[23] Lauri Hella,et al. Finite Generation Problem and n-ary Quantifiers , 1995 .
[24] S. Shelah. Generalized quantifiers and compact logic , 1975 .
[25] A. Mostowski. On a generalization of quantifiers , 1957 .
[26] K. J. Barwise,et al. Axioms for abstract model theory , 1974 .
[27] R. L. Vaught,et al. The completeness of logic with the added quantifier "there are uncountable many" , 1964 .
[28] Jerome Malitz. Review: E. G. K. Lopez-Escobar, On Defining Well-Orderings; E. G. K. Lopez-Escobar, An Addition to "On Defining Well-Orderings." , 1968 .
[29] Johann A. Makowsky,et al. The theorems of beth and Craig in abstract model theory II. Compact logics , 1981, Arch. Math. Log..