Latent Regression in Loglinear Rasch Models

Abstract This article presents a framework for the use of latent variables as outcomes in regression analysis. Based on loglinear Rasch models where item parameters are known or estimated using conditional maximum likelihood a simple and fast estimation algorithm is proposed. The interpretation of regression parameters in the presence of random effects is discussed. A regression model based on a loglinear Rasch model is used to model general and specific group differences in an occupational health study.

[1]  P. McCullagh,et al.  Generalized Linear Models , 1972, Predictive Analytics.

[2]  G. Masters A rasch model for partial credit scoring , 1982 .

[3]  H. Hoijtink Linear and repeated measures models for the person parameters , 1995 .

[4]  A. Zwinderman,et al.  Robustness of Marginal Maximum Likelihoo Estimation in the Rasch odel , 1990 .

[5]  Lalitha Sanathanan,et al.  The Logistic Model and Estimation of Latent Structure , 1978 .

[6]  R. Wolfinger,et al.  Generalized linear mixed models a pseudo-likelihood approach , 1993 .

[7]  K. Christensen SAS macros for Rasch based latent variable modelling , 2003 .

[8]  H. Swaminathan,et al.  Detecting Differential Item Functioning Using Logistic Regression Procedures , 1990 .

[9]  A. Kuk Asymptotically Unbiased Estimation in Generalized Linear Models with Random Effects , 1995 .

[10]  Georg Rasch,et al.  Probabilistic Models for Some Intelligence and Attainment Tests , 1981, The SAGE Encyclopedia of Research Design.

[11]  J. H. Schuenemeyer,et al.  Generalized Linear Models (2nd ed.) , 1992 .

[12]  Aeilko H. Zwinderman,et al.  Response Models with Manifest Predictors , 1997 .

[13]  J. Ware SF-36 health survey: Manual and interpretation guide , 2003 .

[14]  D. Andrich A rating formulation for ordered response categories , 1978 .

[15]  Albert Noack A Class of Random Variables with Discrete Distributions , 1950 .

[16]  I. W. Molenaar,et al.  Rasch models: foundations, recent developments and applications , 1995 .

[17]  Francis Tuerlinckx,et al.  A Hierarchical IRT Model for Criterion-Referenced Measurement , 2000 .

[18]  J. Fox,et al.  Bayesian estimation of a multilevel IRT model using gibbs sampling , 2001 .

[19]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[20]  G. H. Fischer,et al.  The Derivation of Polytomous Rasch Models , 1995 .

[21]  Aeilko H. Zwinderman,et al.  A generalized rasch model for manifest predictors , 1991 .

[22]  Raymond J. Adams,et al.  The Multidimensional Random Coefficients Multinomial Logit Model , 1997 .

[23]  E. B. Andersen,et al.  Estimating the parameters of the latent population distribution , 1977 .

[24]  Erling B. Andersen,et al.  Polytomous Rasch Models and their Estimation , 1995 .

[25]  Akihito Kamata,et al.  Item Analysis by the Hierarchical Generalized Linear Model. , 2001 .

[26]  R. J. Mokken,et al.  Handbook of modern item response theory , 1997 .

[27]  John E. Ware,et al.  SF-36 Health Survey. , 1990 .

[28]  H. Kelderman Computing maximum likelihood estimates of loglinear models from marginal sums with special attention to loglinear item response theory , 1992 .

[29]  B. Zumbo A Handbook on the Theory and Methods of Differential Item Functioning (DIF) LOGISTIC REGRESSION MODELING AS A UNITARY FRAMEWORK FOR BINARY AND LIKERT-TYPE (ORDINAL) ITEM SCORES , 1999 .

[30]  Margaret Wu,et al.  ACER conquest: generalised item response modelling software , 1998 .

[31]  Kimberly S. Maier A Rasch Hierarchical Measurement Model , 2001 .

[32]  Raymond J. Adams,et al.  Multilevel Item Response Models: An Approach to Errors in Variables Regression , 1997 .

[33]  N. Breslow,et al.  Bias Correction in Generalized Linear Mixed Models with Multiple Components of Dispersion , 1996 .

[34]  K. Larsen,et al.  Interpreting Parameters in the Logistic Regression Model with Random Effects , 2000, Biometrics.

[35]  Eric R. Ziegel,et al.  Generalized Linear Models , 2002, Technometrics.

[36]  R. Mislevy Estimating latent distributions , 1984 .

[37]  Ivo W. Molenaar,et al.  Loglinear Rasch Model Tests , 2005 .