An Algebraic Approach to Signaling Cascades with n Layers

[1]  Elisenda Feliu,et al.  An Algebraic Approach to Signaling Cascades with n Layers , 2010, Bulletin of Mathematical Biology.

[2]  C. Wiuf,et al.  A General Mathematical Framework Suitable for Studying Signaling Cascades , 2010, 1008.0427.

[3]  Jeremy Gunawardena,et al.  Biological Systems Theory , 2010, Science.

[4]  M. Feinberg,et al.  Structural Sources of Robustness in Biochemical Reaction Networks , 2010, Science.

[5]  Martin Feinberg,et al.  Multiple Equilibria in Complex Chemical Reaction Networks: Semiopen Mass Action Systems * , 2022 .

[6]  Jeremy Gunawardena,et al.  The rational parameterization theorem for multisite post-translational modification systems. , 2009, Journal of theoretical biology.

[7]  J. Gunawardena,et al.  Unlimited multistability in multisite phosphorylation systems , 2009, Nature.

[8]  T. Höfer,et al.  Multisite protein phosphorylation – from molecular mechanisms to kinetic models , 2009, The FEBS journal.

[9]  T. Vondriska,et al.  The effects of cascade length, kinetics and feedback loops on biological signal transduction dynamics in a simplified cascade model , 2009, Physical biology.

[10]  B. Slepchenko,et al.  On sensitivity amplification in intracellular signaling cascades , 2008, Physical biology.

[11]  Alejandra C. Ventura,et al.  A Hidden Feedback in Signaling Cascades Is Revealed , 2008, PLoS Comput. Biol..

[12]  David Angeli,et al.  Translation-invariant monotone systems, and a global convergence result for enzymatic futile cycles ☆ , 2008 .

[13]  Jeremy Gunawardena,et al.  Distributivity and processivity in multisite phosphorylation can be distinguished through steady-state invariants. , 2007, Biophysical journal.

[14]  Liang Qiao,et al.  Bistability and Oscillations in the Huang-Ferrell Model of MAPK Signaling , 2007, PLoS Comput. Biol..

[15]  Eduardo Sontag,et al.  On the number of steady states in a multiple futile cycle , 2008, Journal of mathematical biology.

[16]  Marta Cascante,et al.  Bistability from double phosphorylation in signal transduction , 2006, The FEBS journal.

[17]  Martin Feinberg,et al.  Multiple Equilibria in Complex Chemical Reaction Networks: Ii. the Species-reactions Graph , 2022 .

[18]  Nils Blüthgen,et al.  Effects of sequestration on signal transduction cascades , 2006, The FEBS journal.

[19]  Thomas Höfer,et al.  Kinetic models of phosphorylation cycles: a systematic approach using the rapid-equilibrium approximation for protein-protein interactions. , 2006, Bio Systems.

[20]  J. Gunawardena Multisite protein phosphorylation makes a good threshold but can be a poor switch. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  B. Bassler,et al.  Quorum sensing: cell-to-cell communication in bacteria. , 2005, Annual review of cell and developmental biology.

[22]  Nils Blüthgen,et al.  Ultrasensitization: Switch-Like Regulation of Cellular Signaling by Transcriptional Induction , 2005, PLoS Comput. Biol..

[23]  B. Kholodenko,et al.  Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades , 2004, The Journal of cell biology.

[24]  Eduardo Sontag,et al.  Optimal Length and Signal Amplification in Weakly Activated Signal Transduction Cascades , 2003, math/0311357.

[25]  Reinhart Heinrich,et al.  Mathematical models of protein kinase signal transduction. , 2002, Molecular cell.

[26]  James E. Ferrell,et al.  Bistability in cell signaling: How to make continuous processes discontinuous, and reversible processes irreversible. , 2001, Chaos.

[27]  B. Kholodenko,et al.  Quantification of information transfer via cellular signal transduction pathways , 1997, FEBS letters.

[28]  Chi-Ying F. Huang,et al.  Ultrasensitivity in the mitogen-activated protein kinase cascade. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[29]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[30]  J. Bishop,et al.  Zero-order ultrasensitivity in the regulation of glycogen phosphorylase. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[31]  D. Koshland,et al.  Ultrasensitivity in biochemical systems controlled by covalent modification. Interplay between zero-order and multistep effects. , 1984, The Journal of biological chemistry.

[32]  D. Koshland,et al.  An amplified sensitivity arising from covalent modification in biological systems. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[33]  W. Bardsley,et al.  Sigmoid curves, non-linear double-reciprocal plots and allosterism. , 1975, Biochemical Journal.

[34]  Macfarlane Rg,et al.  AN ENZYME CASCADE IN THE BLOOD CLOTTING MECHANISM, AND ITS FUNCTION AS A BIOCHEMICAL AMPLIFIER , 1964 .

[35]  A. Hurwitz Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt , 1895 .

[36]  Jörg Raisch,et al.  Multistationarity in the activation of a MAPK: parametrizing the relevant region in parameter space. , 2008, Mathematical biosciences.

[37]  Martin Feinberg,et al.  Multiple Equilibria in Complex Chemical Reaction Networks: I. the Injectivity Property * , 2006 .

[38]  С.,et al.  The Cell , 1997, Nature Medicine.

[39]  A. R. Mariscal,et al.  Quantification of information , 1993 .

[40]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[41]  R. Macfarlane An Enzyme Cascade in the Blood Clotting Mechanism, and its Function as a Biochemical Amplifier , 1964, Nature.