Partial depletion of dopaminergic neurons in the substantia nigra impairs olfaction and alters neural activity in the olfactory bulb

[1]  A. Targa,et al.  Dopaminergic Lesion in the Olfactory Bulb Restores Olfaction and Induces Depressive-Like Behaviors in a 6-OHDA Model of Parkinson’s Disease , 2018, Molecular Neurobiology.

[2]  Gordon M Shepherd,et al.  Parallel odor processing by mitral and middle tufted cells in the olfactory bulb , 2018, Scientific reports.

[3]  Adi Mizrahi,et al.  History-Dependent Odor Processing in the Mouse Olfactory Bulb , 2017, The Journal of Neuroscience.

[4]  D. Restrepo,et al.  Insulin Modulates Neural Activity of Pyramidal Neurons in the Anterior Piriform Cortex , 2017, Front. Cell. Neurosci..

[5]  Gabriela O. Serrano,et al.  A primacy code for odor identity , 2017, Nature Communications.

[6]  Fuqiang Xu,et al.  Whole-Brain Mapping of the Inputs and Outputs of the Medial Part of the Olfactory Tubercle , 2017, Front. Neural Circuits.

[7]  X. Bao,et al.  Intrastriatal Transplantation of Human Neural Stem Cells Restores the Impaired Subventricular Zone in Parkinsonian Mice , 2017, Stem cells.

[8]  R. Doty Olfactory dysfunction in neurodegenerative diseases: is there a common pathological substrate? , 2017, The Lancet Neurology.

[9]  I. Rodriguez,et al.  Dense encoding of natural odorants by ensembles of sparsely activated neurons in the olfactory bulb , 2016, Scientific Reports.

[10]  D. Wesson,et al.  Illustrated Review of the Ventral Striatum's Olfactory Tubercle. , 2016, Chemical senses.

[11]  Leslie M Kay,et al.  Gamma and Beta Oscillations Define a Sequence of Neurocognitive Modes Present in Odor Processing , 2016, The Journal of Neuroscience.

[12]  G. Coronas-Samano,et al.  The Habituation/Cross-Habituation Test Revisited: Guidance from Sniffing and Video Tracking , 2016, Neural plasticity.

[13]  E. Hirsch,et al.  Understanding Dopaminergic Cell Death Pathways in Parkinson Disease , 2016, Neuron.

[14]  Toshio Iijima,et al.  A novel method for quantifying similarities between oscillatory neural responses in wavelet time–frequency power profiles , 2016, Brain Research.

[15]  Xiang-Pan Kong,et al.  Neuropeptide S ameliorates olfactory spatial memory impairment induced by scopolamine and MK801 through activation of cognate receptor-expressing neurons in the subiculum complex , 2016, Brain Structure and Function.

[16]  H. Reichmann,et al.  Pathogenesis of Parkinson disease—the gut–brain axis and environmental factors , 2015, Nature Reviews Neurology.

[17]  Shigeyoshi Itohara,et al.  Supersensitive detection and discrimination of enantiomers by dorsal olfactory receptors: evidence for hierarchical odour coding , 2015, Scientific Reports.

[18]  H. Nakayama,et al.  Transiently impaired neurogenesis in MPTP mouse model of Parkinson's disease. , 2015, Neurotoxicology.

[19]  Hassana K. Oyibo,et al.  An Interglomerular Circuit Gates Glomerular Output and Implements Gain Control in the Mouse Olfactory Bulb , 2015, Neuron.

[20]  W. Oertel,et al.  A new dopaminergic nigro-olfactory projection , 2015, Acta Neuropathologica.

[21]  D. Gire,et al.  ϒ Spike-Field Coherence in a Population of Olfactory Bulb Neurons Differentiates between Odors Irrespective of Associated Outcome , 2015, Journal of Neuroscience.

[22]  L. Kay Olfactory system oscillations across phyla , 2015, Current Opinion in Neurobiology.

[23]  W. Le,et al.  Olfactory Dysfunction and Neurotransmitter Disturbance in Olfactory Bulb of Transgenic Mice Expressing Human A53T Mutant α-Synuclein , 2015, PloS one.

[24]  乐卫东 Olfactory Dysfunction and Neurotransmitter Disturbance in Olfactory Bulb of Transgenic Mice Expressing Human A53T Mutant α-Synuclein , 2015 .

[25]  D. Gire,et al.  Precise Detection of Direct Glomerular Input Duration by the Olfactory Bulb , 2014, The Journal of Neuroscience.

[26]  Shin Nagayama,et al.  Neuronal organization of olfactory bulb circuits , 2014, Front. Neural Circuits..

[27]  R. Drucker-Colín,et al.  Unilateral olfactory deficit in a hemiparkinson’s disease mouse model , 2014, Neuroreport.

[28]  Nicolas Fourcaud-Trocmé,et al.  Two distinct olfactory bulb sublaminar networks involved in gamma and beta oscillation generation: a CSD study in the anesthetized rat , 2014, Front. Neural Circuits.

[29]  N. Uchida,et al.  Coding and transformations in the olfactory system. , 2014, Annual review of neuroscience.

[30]  K. Jellinger,et al.  Olfactory bulb involvement in neurodegenerative diseases , 2014, Acta Neuropathologica.

[31]  Sandeep Robert Datta,et al.  Olfactory maps, circuits and computations , 2014, Current Opinion in Neurobiology.

[32]  H. Hatt,et al.  Olfaction in Three Genetic and Two MPTP-Induced Parkinson’s Disease Mouse Models , 2013, PloS one.

[33]  Z. Berger,et al.  Behavioral Characterization of A53T Mice Reveals Early and Late Stage Deficits Related to Parkinson’s Disease , 2013, PloS one.

[34]  T. Sejnowski,et al.  Temporal Processing in the Olfactory System: Can We See a Smell? , 2013, Neuron.

[35]  M. T. Shipley,et al.  Olfactory Bulb Short Axon Cell Release of GABA and Dopamine Produces a Temporally Biphasic Inhibition–Excitation Response in External Tufted Cells , 2013, The Journal of Neuroscience.

[36]  W. Le,et al.  Hyposmia: a possible biomarker of Parkinson’s disease , 2013, Neuroscience Bulletin.

[37]  Alan Carleton,et al.  Similar Odor Discrimination Behavior in Head-Restrained and Freely Moving Mice , 2012, PloS one.

[38]  Richard L. Doty,et al.  Olfaction in Parkinson's disease and related disorders , 2012, Neurobiology of Disease.

[39]  Sebastian T. Bundschuh,et al.  Dopaminergic Modulation of Mitral Cells and Odor Responses in the Zebrafish Olfactory Bulb , 2012, The Journal of Neuroscience.

[40]  R. Warre,et al.  Development of a unilaterally-lesioned 6-OHDA mouse model of Parkinson's disease. , 2012, Journal of visualized experiments : JoVE.

[41]  Donald A. Wilson,et al.  Cortical Processing of Odor Objects , 2011, Neuron.

[42]  Donald A Wilson,et al.  Sensory Network Dysfunction, Behavioral Impairments, and Their Reversibility in an Alzheimer's β-Amyloidosis Mouse Model , 2011, The Journal of Neuroscience.

[43]  C. Linster,et al.  Dopaminergic modulation of olfactory bulb processing affects odor discrimination learning in rats. , 2009, Behavioral neuroscience.

[44]  B. Messaoudi,et al.  A computer-assisted odorized hole-board for testing olfactory perception in mice , 2009, Journal of Neuroscience Methods.

[45]  N. Kopell,et al.  Olfactory Oscillations: the What, How and What For , 2022 .

[46]  Arturo Alvarez-Buylla,et al.  Origin and function of olfactory bulb interneuron diversity , 2008, Trends in Neurosciences.

[47]  E. Martignoni,et al.  The 6-hydroxydopamine model: news from the past. , 2008, Parkinsonism & related disorders.

[48]  M. Chesselet,et al.  Olfactory deficits in mice overexpressing human wildtype α‐synuclein , 2008, The European journal of neuroscience.

[49]  Leslie M. Kay,et al.  Olfactory system gamma oscillations: the physiological dissection of a cognitive neural system , 2008, Cognitive Neurodynamics.

[50]  A. Hartmann,et al.  Characterization of the striatal 6-OHDA model of Parkinson's disease in wild type and α-synuclein-deleted mice , 2008, Experimental Neurology.

[51]  S. Itohara,et al.  Innate versus learned odour processing in the mouse olfactory bulb , 2007, Nature.

[52]  N. Kopell,et al.  Olfactory Bulb Gamma Oscillations Are Enhanced with Task Demands , 2007, The Journal of Neuroscience.

[53]  G. Miller,et al.  Olfactory discrimination deficits in mice lacking the dopamine transporter or the D2 dopamine receptor , 2006, Behavioural Brain Research.

[54]  H. Okano,et al.  Functional properties of dopaminergic neurones in the mouse olfactory bulb , 2005, The Journal of physiology.

[55]  Andreas Schober,et al.  Classic toxin-induced animal models of Parkinson’s disease: 6-OHDA and MPTP , 2004, Cell and Tissue Research.

[56]  L. Haberly,et al.  Beta and gamma oscillations in the olfactory system of the urethane-anesthetized rat. , 2003, Journal of neurophysiology.

[57]  W. Dauer,et al.  Parkinson's Disease Mechanisms and Models , 2003, Neuron.

[58]  J. Vincent,et al.  Dopamine depresses synaptic inputs into the olfactory bulb. , 1999, Journal of neurophysiology.

[59]  J. Bormann,et al.  Dopamine receptor subtypes modulate olfactory bulb γ-aminobutyric acid type A receptors , 1999 .

[60]  J. Bormann,et al.  Dopamine receptor subtypes modulate olfactory bulb gamma-aminobutyric acid type A receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.