Interval Observers for Time-Varying Discrete-Time Systems

This techical note deals with interval state observer design for time-varying discrete-time systems. The problem of a similarity transformation computation which connects a (time-varying) matrix and its nonnegative representation is studied. Three solutions are proposed: for a generic time-varying system, a system with positive state, and for a particular class of periodical systems. Numerical simulations are provided to demonstrate advantages of the developed techniques.

[1]  Ali Zolghadri,et al.  Improving fault detection abilities of extended Kalman filters by covariance matrices adjustment , 2010, 2010 Conference on Control and Fault-Tolerant Systems (SysTol).

[2]  Konrad Reif,et al.  The extended Kalman filter as an exponential observer for nonlinear systems , 1999, IEEE Trans. Signal Process..

[3]  Leonid M. Fridman,et al.  Interval estimation for LPV systems applying high order sliding mode techniques , 2012, Autom..

[4]  Mustafa Khammash,et al.  Parameter Estimation and Model Selection in Computational Biology , 2010, PLoS Comput. Biol..

[5]  Gildas Besancon,et al.  Nonlinear observers and applications , 2007 .

[6]  J. Norton,et al.  Bounding Approaches to System Identification , 1996 .

[7]  Eduardo F. Camacho,et al.  Guaranteed state estimation by zonotopes , 2005, Autom..

[8]  Tongxing Lu,et al.  Solution of the matrix equation AX−XB=C , 2005, Computing.

[9]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[10]  H. Nijmeijer,et al.  New directions in nonlinear observer design , 1999 .

[11]  S. Bittanti,et al.  Periodic Systems: Filtering and Control , 2008 .

[12]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[13]  Alex M. Andrew,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .

[14]  Denis V. Efimov,et al.  Interval state observer for nonlinear time varying systems , 2013, Autom..

[15]  Gérard Bloch,et al.  Bounded state reconstruction error for LPV systems with estimated parameters , 2004 .

[16]  O. Rojo,et al.  Constructing symmetric nonnegative matrices via the fast fourier transform , 2003 .

[17]  John Norton,et al.  Computationally efficient algorithms for state estimation with ellipsoidal approximations , 2002 .

[18]  Denis V. Efimov,et al.  Interval State Estimation for a Class of Nonlinear Systems , 2012, IEEE Transactions on Automatic Control.

[19]  Jean-Luc Gouzé,et al.  Closed loop observers bundle for uncertain biotechnological models , 2004 .

[20]  Luigi Chisci,et al.  Recursive state bounding by parallelotopes , 1996, Autom..

[21]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[22]  Jean-Luc Gouzé,et al.  Near optimal interval observers bundle for uncertain bioreactors , 2007 .

[23]  Lorenzo Marconi,et al.  Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems , 2005 .

[24]  Wilfrid Perruquetti,et al.  On interval observer design for time-invariant discrete-time systems , 2013, 2013 European Control Conference (ECC).

[25]  I. V. Gaishun The canonical form of reducible discrete systems with degenerate coefficient matrices , 2000 .

[26]  Eric Walter,et al.  Ellipsoidal parameter or state estimation under model uncertainty , 2004, Autom..

[27]  Olivier Bernard,et al.  Interval observers for linear time-invariant systems with disturbances , 2011, Autom..

[28]  Denis V. Efimov,et al.  Control of Nonlinear and LPV Systems: Interval Observer-Based Framework , 2013, IEEE Transactions on Automatic Control.

[29]  Chia-Chi Tsui,et al.  Solution Of Matrix Equation , 2003 .

[30]  W. P. M. H. Heemels,et al.  Observer-Based Control of Discrete-Time LPV Systems With Uncertain Parameters $ $ , 2010, IEEE Transactions on Automatic Control.

[31]  Frédéric Mazenc,et al.  Interval observers for discrete-time systems , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[32]  Olivier Bernard,et al.  Asymptotically Stable Interval Observers for Planar Systems With Complex Poles , 2010, IEEE Transactions on Automatic Control.

[33]  Panos J. Antsaklis,et al.  New bounds for robust stability of continuous and discrete-time systems under parametric uncertainty , 1995, Kybernetika.

[34]  Morris W. Hirsch,et al.  Monotone maps: A review , 2005 .

[35]  J. Tsinias,et al.  Time-varying observers for a class of nonlinear systems , 2008, Syst. Control. Lett..