Epileptic Seizure Prediction by Exploiting Spatiotemporal Relationship of EEG Signals Using Phase Correlation

Automated seizure prediction has a potential in epilepsy monitoring, diagnosis, and rehabilitation. Electroencephalogram (EEG) is widely used for seizure detection and prediction. This paper proposes a new seizure prediction approach based on spatiotemporal relationship of EEG signals using phase correlation. This measures the relative change between current and reference vectors of EEG signals which can be used to identify preictal/ictal (before the actual seizure onset/ actual seizure period) and interictal (period between adjacent seizures) EEG signals to predict the seizure. The experiments show that the proposed method is less sensitive to artifacts and provides higher prediction accuracy (i.e., 91.95%) and lower number of false alarms compared to the state-of-the-art methods using intracranial EEG signals in different brain locations of 21 patients from a benchmark data set.

[1]  Ram Bilas Pachori,et al.  Epileptic seizure detection based on the instantaneous area of analytic intrinsic mode functions of EEG signals , 2013 .

[2]  Manoranjan Paul,et al.  Epileptic seizure detection by exploiting temporal correlation of electroencephalogram signals , 2015, IET Signal Process..

[3]  Weidong Zhou,et al.  Epileptic Seizure Detection Using Lacunarity and Bayesian Linear Discriminant Analysis in Intracranial EEG , 2013, IEEE Transactions on Biomedical Engineering.

[4]  Shufang Li,et al.  Seizure Prediction Using Spike Rate of Intracranial EEG , 2013, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[5]  Osvaldo A. Rosso,et al.  Wavelet analysis of generalized tonic-clonic epileptic seizures , 2003, Signal Process..

[6]  PachoriRam Bilas,et al.  Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions , 2015 .

[7]  PachoriRam Bilas,et al.  Classification of Seizure and Nonseizure EEG Signals Using Empirical Mode Decomposition , 2012 .

[8]  David W. Corne,et al.  Predicting Epileptic Seizures in Advance , 2014, PloS one.

[9]  Johan A. K. Suykens,et al.  LS-SVMlab Toolbox User's Guide , 2010 .

[10]  Bao-Gang Hu,et al.  Linear feature-weighted support vector machine , 2009 .

[11]  Xiao-Jun Wu,et al.  Locality preserving projection least squares twin support vector machine for pattern classification , 2018, Pattern Analysis and Applications.

[12]  K. K. Majumdar,et al.  Automatic Seizure Detection in ECoG by Differential Operator and Windowed Variance , 2011, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[13]  Ziyi Chen,et al.  Construction of rules for seizure prediction based on approximate entropy , 2014, Clinical Neurophysiology.

[14]  Fabrice Wendling,et al.  Extraction of reproducible seizure patterns based on EEG scalp correlations , 2007, Biomed. Signal Process. Control..

[15]  Saeid Sanei,et al.  EEG signal processing , 2000, Clinical Neurophysiology.

[16]  Theoden Netoff,et al.  Seizure prediction using cost-sensitive support vector machine , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[17]  Paul Sajda,et al.  Machine learning for detection and diagnosis of disease. , 2006, Annual review of biomedical engineering.

[18]  Haifeng Wang,et al.  Comparison of SVM and LS-SVM for Regression , 2005, 2005 International Conference on Neural Networks and Brain.

[19]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machine Classifiers , 1999, Neural Processing Letters.

[20]  Reshma Khemchandani,et al.  Twin Support Vector Machines for Pattern Classification , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[21]  F. Mormann,et al.  Seizure prediction: the long and winding road. , 2007, Brain : a journal of neurology.

[22]  F. H. Lopes da Silva,et al.  The Impact of EEG/MEG Signal Processing and Modeling in the Diagnostic and Management of Epilepsy , 2008, IEEE Reviews in Biomedical Engineering.

[23]  W. Pralong,et al.  Seizure suppression and lack of adenosine A1 receptor desensitization after focal long-term delivery of adenosine by encapsulated myoblasts , 2005, Experimental Neurology.

[24]  Luigi Chisci,et al.  Real-Time Epileptic Seizure Prediction Using AR Models and Support Vector Machines , 2010, IEEE Transactions on Biomedical Engineering.

[25]  Ram Bilas Pachori,et al.  Analysis of normal and epileptic seizure EEG signals using empirical mode decomposition , 2011, Comput. Methods Programs Biomed..

[26]  Manoranjan Paul,et al.  Epileptic seizure detection by analyzing EEG signals using different transformation techniques , 2014, Neurocomputing.

[27]  C. Teixeira,et al.  Preprocessing effects of 22 linear univariate features on the performance of seizure prediction methods , 2013, Journal of Neuroscience Methods.

[28]  Bu-Sung Lee,et al.  Direct Intermode Selection for H.264 Video Coding Using Phase Correlation , 2011, IEEE Transactions on Image Processing.

[29]  Rajeev Sharma,et al.  Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions , 2015, Expert Syst. Appl..

[30]  Yann LeCun,et al.  Classification of patterns of EEG synchronization for seizure prediction , 2009, Clinical Neurophysiology.

[31]  R. Esteller,et al.  Comparison of line length feature before and after brain electrical stimulation in epileptic patients , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[32]  Jedediah M. Singer,et al.  Quickest detection of drug-resistant seizures: An optimal control approach , 2011, Epilepsy & Behavior.

[33]  Ram Bilas Pachori,et al.  Classification of Seizure and Nonseizure EEG Signals Using Empirical Mode Decomposition , 2012, IEEE Transactions on Information Technology in Biomedicine.

[34]  Manoranjan Paul,et al.  Features extraction and classification for Ictal and Interictal EEG signals using EMD and DCT , 2012, 2012 15th International Conference on Computer and Information Technology (ICCIT).

[35]  Bu-Sung Lee,et al.  A Long-Term Reference Frame for Hierarchical B-Picture-Based Video Coding , 2014, IEEE Transactions on Circuits and Systems for Video Technology.

[36]  M. Ogorzalek,et al.  Time series prediction with ensemble models , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[37]  Mehdi Chehel Amirani,et al.  Automatic feature extraction using generalised autoregressive conditional heteroscedasticity model: an application to electroencephalogram classification , 2012, IET Signal Process..

[38]  Keshab K. Parhi,et al.  Seizure Prediction With Spectral Power of EEG Using Cost-Sensitive Support Vector Machines , 2010 .

[39]  Michael R. Frater,et al.  An Efficient Mode Selection Prior to the Actual Encoding for H.264/AVC Encoder , 2009, IEEE Transactions on Multimedia.

[40]  Y. Tang,et al.  A tunable support vector machine assembly classifier for epileptic seizure detection , 2012, Expert Syst. Appl..

[41]  James R. Williamson,et al.  Seizure prediction using EEG spatiotemporal correlation structure , 2012, Epilepsy & Behavior.

[42]  Weidong Zhou,et al.  Automatic Seizure Detection Using Wavelet Transform and SVM in Long-Term Intracranial EEG , 2012, IEEE Transactions on Neural Systems and Rehabilitation Engineering.