A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks
暂无分享,去创建一个
[1] I. Devetak,et al. Classical data compression with quantum side information , 2003 .
[2] Nilanjana Datta,et al. Smooth Entropies and the Quantum Information Spectrum , 2009, IEEE Transactions on Information Theory.
[3] Richard G. Baraniuk,et al. Redundancy Rates of Slepian-Wolf Coding ∗ , 2004 .
[4] Ioannis Kontoyiannis. Second-order noiseless source coding theorems , 1997, IEEE Trans. Inf. Theory.
[5] 林 正人. Quantum information : an introduction , 2006 .
[6] M. Nussbaum,et al. THE CHERNOFF LOWER BOUND FOR SYMMETRIC QUANTUM HYPOTHESIS TESTING , 2006, quant-ph/0607216.
[7] F. Hiai,et al. The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .
[8] Feller William,et al. An Introduction To Probability Theory And Its Applications , 1950 .
[9] D. Petz,et al. Quantum Entropy and Its Use , 1993 .
[10] Sergio Verdú,et al. Approximation theory of output statistics , 1993, IEEE Trans. Inf. Theory.
[11] Renato Renner,et al. Security of quantum key distribution , 2005, Ausgezeichnete Informatikdissertationen.
[12] Ke Li,et al. Second Order Asymptotics for Quantum Hypothesis Testing , 2012, ArXiv.
[13] Masahito Hayashi,et al. Non-asymptotic analysis of privacy amplification via Rényi entropy and inf-spectral entropy , 2012, 2013 IEEE International Symposium on Information Theory.
[14] Vincent Y. F. Tan,et al. The dispersion of Slepian-Wolf coding , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.
[15] Hiroki Koga,et al. Information-Spectrum Methods in Information Theory , 2002 .
[16] Robert König,et al. The Operational Meaning of Min- and Max-Entropy , 2008, IEEE Transactions on Information Theory.
[17] H. Yuen. Quantum detection and estimation theory , 1978, Proceedings of the IEEE.
[18] M. Berta. Single-shot Quantum State Merging , 2009, 0912.4495.
[19] M. Tomamichel. A framework for non-asymptotic quantum information theory , 2012, 1203.2142.
[20] Robert König,et al. Universally Composable Privacy Amplification Against Quantum Adversaries , 2004, TCC.
[21] Marco Tomamichel,et al. Duality Between Smooth Min- and Max-Entropies , 2009, IEEE Transactions on Information Theory.
[22] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[23] Marco Tomamichel,et al. A Fully Quantum Asymptotic Equipartition Property , 2008, IEEE Transactions on Information Theory.
[24] Masahito Hayashi,et al. Second-Order Asymptotics in Fixed-Length Source Coding and Intrinsic Randomness , 2005, IEEE Transactions on Information Theory.
[25] H. Vincent Poor,et al. Channel Coding Rate in the Finite Blocklength Regime , 2010, IEEE Transactions on Information Theory.
[26] H. Vincent Poor,et al. Channel coding: non-asymptotic fundamental limits , 2010 .
[27] Larry Carter,et al. Universal Classes of Hash Functions , 1979, J. Comput. Syst. Sci..
[28] I. Tyurin. Refinement of the upper bounds of the constants in Lyapunov's theorem , 2010 .
[29] R. Renner,et al. One-shot classical-quantum capacity and hypothesis testing. , 2010, Physical review letters.
[30] Nilanjana Datta,et al. Min- and Max-Relative Entropies and a New Entanglement Monotone , 2008, IEEE Transactions on Information Theory.
[31] Joseph M. Renes,et al. One-Shot Classical Data Compression With Quantum Side Information and the Distillation of Common Randomness or Secret Keys , 2010, IEEE Transactions on Information Theory.
[32] Masahito Hayashi,et al. An Information-Spectrum Approach to Classical and Quantum Hypothesis Testing for Simple Hypotheses , 2007, IEEE Transactions on Information Theory.
[33] Masahito Hayashi,et al. Information Spectrum Approach to Second-Order Coding Rate in Channel Coding , 2008, IEEE Transactions on Information Theory.
[34] M. Hayashi. Optimal sequence of quantum measurements in the sense of Stein's lemma in quantum hypothesis testing , 2002, quant-ph/0208020.
[35] K. Audenaert,et al. Quantum state discrimination bounds for finite sample size , 2012, 1204.0711.
[36] Masahito Hayashi,et al. General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.
[37] Axthonv G. Oettinger,et al. IEEE Transactions on Information Theory , 1998 .
[38] Tomohiro Ogawa,et al. Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.
[39] Nilanjana Datta,et al. The Quantum Capacity of Channels With Arbitrarily Correlated Noise , 2009, IEEE Transactions on Information Theory.