Closed Form Solutions for Reconstruction Via Complex Analysis

We address the problem of control-based recovery of robot pose and environmental lay-out. Panoramic sensors provide a 1D projection of characteristic features of a 2D operation map. Trajectories of these projections contain information about the position of a priori unknown landmarks in the environment. We introduce the notion of spatiotemporal signatures of projection trajectories. These signatures are global measures, characterized by considerably higher robustness with respect to noise and outliers than the commonly applied point correspondence. By modeling the 2D motion plane as the complex plane we show that by means of complex analysis the reconstruction problem can be reduced to a quadratic—or even linear in some cases—equation. The algorithm is tested in simulations and in a real experiment.

[1]  L. Ahlfors Complex analysis : an introduction to the theory of analytic functions of one complex variable / Lars V. Ahlfors , 1984 .

[2]  J. W. Brown,et al.  Complex Variables and Applications , 1985 .

[3]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[4]  Rodney A. Brooks,et al.  Visual map making for a mobile robot , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[5]  Olivier D. Faugeras,et al.  Building, Registrating, and Fusing Noisy Visual Maps , 1988, Int. J. Robotics Res..

[6]  Kokichi Sugihara,et al.  Some location problems for robot navigation using a single camera , 1988, Comput. Vis. Graph. Image Process..

[7]  Eric Paul Krotkov,et al.  Active Computer Vision by Cooperative Focus and Stereo , 1989, Springer Series in Perception Engineering.

[8]  D.J. Kriegman,et al.  Stereo vision and navigation in buildings for mobile robots , 1989, IEEE Trans. Robotics Autom..

[9]  Hormoz Shariat,et al.  Motion Estimation with More than Two Frames , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Allen R. Hanson,et al.  Description and reconstruction from image trajectories of rotational motion , 1990, [1990] Proceedings Third International Conference on Computer Vision.

[11]  R. Remmert,et al.  Theory of Complex Functions , 1990 .

[12]  Rama Chellappa,et al.  Estimating the Kinematics and Structure of a Rigid Object from a Sequence of Monocular Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Olivier Faugeras,et al.  Three D-Dynamic Scene Analysis: A Stereo Based Approach , 1992 .

[14]  Olivier Faugeras,et al.  3D Dynamic Scene Analysis: A Stereo Based Approach , 1992 .

[15]  Avinash C. Kak,et al.  Fast vision-guided mobile robot navigation using model-based reasoning and prediction of uncertainties , 1992, CVGIP Image Underst..

[16]  Thomas S. Huang,et al.  Motion and Structure from Image Sequences , 1992 .

[17]  Avinash C. Kak,et al.  Fast Vision-guided Mobile Robot Navigation Using Model-based Reasoning And Prediction Of Uncertainties , 1992, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems.

[18]  Jake K. Aggarwal,et al.  Significant line segments for an indoor mobile robot , 1993, IEEE Trans. Robotics Autom..

[19]  Gregory D. Hager,et al.  Real-time vision-based robot localization , 1993, IEEE Trans. Robotics Autom..

[20]  Gérard G. Medioni,et al.  Map-based localization using the panoramic horizon , 1995, IEEE Trans. Robotics Autom..

[21]  Yasushi Yagi,et al.  Map-based navigation for a mobile robot with omnidirectional image sensor COPIS , 1995, IEEE Trans. Robotics Autom..

[22]  Richard Szeliski,et al.  3-D Scene Data Recovery Using Omnidirectional Multibaseline Stereo , 1996, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[23]  Tristan Needham,et al.  Visual Complex Analysis , 1997 .

[24]  Margrit Betke,et al.  Mobile robot localization using landmarks , 1997, IEEE Trans. Robotics Autom..

[25]  Shree K. Nayar,et al.  Catadioptric omnidirectional camera , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[26]  Naokazu Yokoya,et al.  Visual surveillance and monitoring system using an omnidirectional video camera , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[27]  Pietro Perona,et al.  Reducing "Structure From Motion": A General Framework for Dynamic Vision Part 1: Modeling , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  Tomás Svoboda,et al.  Epipolar Geometry of Panoramic Cameras , 1998, ECCV.

[29]  A. Reeves,et al.  High Accuracy Depth Measurement using Multiview Stereo , 1999 .

[30]  Ruzena Bajcsy,et al.  Complex Analysis for Reconstruction from Controlled Motion , 1999, CAIP.

[31]  Gregory D. Hager,et al.  Global Signatures for Robot Control and Reconstruction , 2000 .

[32]  Olivier D. Faugeras,et al.  Self-Calibration of a 1D Projective Camera and Its Application to the Self-Calibration of a 2D Projective Camera , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Minas E. Spetsakis,et al.  A multi-frame approach to visual motion perception , 1991, International Journal of Computer Vision.