Dl-Link: a Conceptual Clustering Algorithm for Indexing Description Logics Knowledge Bases

Efficient resource retrieval is a crucial issue, particularly when semantic resource descriptions are considered which enable the exploitation of reasoning services during the retrieval process. In this context, resources are commonly retrieved by checking if each available resource description satisfies the given query. This approach becomes inefficient with the increase of available resources. We propose a method for improving the retrieval process by constructing a tree index through a new conceptual clustering method for resources expressed as class definitions or as instances of classes in ontology languages. The available resource descriptions are located at the leaf nodes of the index, while inner nodes represent intensional descriptions (generalizations) of their child nodes. The retrieval is performed by following the tree branches whose nodes satisfy the query. Query answering time may be improved as the number of retrieval steps may be O(log n) in the best case.

[1]  Ian Horrocks,et al.  A software framework for matchmaking based on semantic web technology , 2003, WWW '03.

[2]  Ian Horrocks,et al.  Optimising Tableaux Decision Procedures For Description Logics , 1997 .

[3]  Francesco M. Donini,et al.  Deduction in Concept Languages: From Subsumption to Instance Checking , 1994, J. Log. Comput..

[4]  Chris Preist A Conceptual Architecture for Semantic Web Services , 2004, International Semantic Web Conference.

[5]  Myoung-Ho Kim,et al.  Information Retrieval Based on Conceptual Distance in is-a Hierarchies , 1993, J. Documentation.

[6]  Hans-Hermann Bock,et al.  Analysis of Symbolic Data , 2000 .

[7]  James A. Hendler,et al.  The Semantic Web" in Scientific American , 2001 .

[8]  Thomas Mantay Commonality-Based ABox Retrieval , 2000 .

[9]  Dieter Fensel,et al.  Automatic Location of Services , 2005, ESWC.

[10]  Ryszard S. Michalski,et al.  Conceptual Clustering of Structured Objects: A Goal-Oriented Approach , 1986, Artif. Intell..

[11]  Huajun Chen,et al.  The Semantic Web , 2011, Lecture Notes in Computer Science.

[12]  Franz Baader,et al.  Computing the Least Common Subsumer w.r.t. a Background Terminology , 2004, Description Logics.

[13]  J. Gonzalez-Castillo,et al.  Description logics for matchmaking of services , 2001 .

[14]  Boris Motik,et al.  Query Answering for OWL-DL with Rules , 2004, SEMWEB.

[15]  Nicola Fanizzi,et al.  A Semantic Similarity Measure for Expressive Description Logics , 2009, ArXiv.

[16]  Steffen Staab,et al.  On the Influence of Description Logics Ontologies on Conceptual Similarity , 2008, EKAW.

[17]  Luigi Iannone,et al.  An Algorithm Based on Counterfactuals for Concept Learning in the Semantic Web , 2005, IEA/AIE.

[18]  Dimitrios Skoutas,et al.  Exploiting User Feedback to Improve Semantic Web Service Discovery , 2009, SEMWEB.

[19]  Volker Haarslev,et al.  On the Scalability of Description Logic Instance Retrieval , 2006, Journal of Automated Reasoning.

[20]  David W. Conrath,et al.  Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy , 1997, ROCLING/IJCLCLP.

[21]  Jeff Z. Pan,et al.  ONTOSEARCH2: SEARCHING AND QUERYING WEB ONTOLOGIES , 2007 .

[22]  Boris Motik,et al.  Matching Semantic Service Descriptions with Local Closed-World Reasoning , 2006, ESWC.

[23]  Takahiro Kawamura,et al.  Semantic Matching of Web Services Capabilities , 2002, SEMWEB.

[24]  Steffen Staab,et al.  COMM: A Core Ontology for MultimediaAnnotation , 2009, Handbook on Ontologies.

[25]  Jane Hunter,et al.  The Application of Semantic Web Technologies to Multimedia Data Fusion within eScience , 2008 .

[26]  Anni-Yasmin Turhan,et al.  Pushing the Sonic Border — Sonic 1 . 0 ? , 2005 .

[27]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[28]  Chris H. Q. Ding,et al.  Cluster Aggregate Inequality and Multi-level Hierarchical Clustering , 2005, PKDD.

[29]  Martin Hepp,et al.  A Methodology for Deriving OWL Ontologies from Products and Services Categorization Standards , 2004, ECIS.

[30]  Matthias Klusch,et al.  Automated semantic web service discovery with OWLS-MX , 2006, AAMAS '06.

[31]  Nicola Fanizzi,et al.  DL-FOIL Concept Learning in Description Logics , 2008, ILP.

[32]  Ali R. Hurson,et al.  Automated resolution of semantic heterogeneity in multidatabases , 1994, TODS.

[33]  Boi Faltings,et al.  Flexible and efficient matchmaking and ranking in service directories , 2005, IEEE International Conference on Web Services (ICWS'05).

[34]  Hans-Hermann Bock,et al.  Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data , 2000 .

[35]  Francesco M. Donini,et al.  A system for principled matchmaking in an electronic marketplace , 2003, WWW '03.

[36]  Ralf Küsters,et al.  Computing Least Common Subsumers in Description Logics with Existential Restrictions , 1999, IJCAI.

[37]  Nicola Fanizzi,et al.  A dissimilarity measure for ALC concept descriptions , 2006, SAC '06.

[38]  Matthias Klusch,et al.  Hybrid Adaptive Web Service Selection with SAWSDL-MX and WSDL-Analyzer , 2009, ESWC.

[39]  Roy Rada,et al.  Development and application of a metric on semantic nets , 1989, IEEE Trans. Syst. Man Cybern..

[40]  Alexander Borgida,et al.  Towards Measuring Similarity in Description Logics , 2005, Description Logics.

[41]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[42]  Martin Hepp,et al.  GoodRelations: An Ontology for Describing Products and Services Offers on the Web , 2008, EKAW.

[43]  Diego Calvanese,et al.  The Description Logic Handbook , 2007 .

[44]  Philip Resnik,et al.  Semantic Similarity in a Taxonomy: An Information-Based Measure and its Application to Problems of Ambiguity in Natural Language , 1999, J. Artif. Intell. Res..

[45]  Claudio Bartolini,et al.  Semantic web support for the business-to-business e-commerce lifecycle , 2002, WWW '02.

[46]  Verena Kantere,et al.  Efficient Semantic Web Service Discovery in Centralized and P2P Environments , 2008, SEMWEB.

[47]  Diana Maynard,et al.  Metrics for Evaluation of Ontology-based Information Extraction , 2006, EON@WWW.

[48]  Martin Hepp,et al.  A Caching Mechanism for Semantic Web Service Discovery , 2007, ISWC/ASWC.