High-speed fixed-target serial virus crystallography

We report a method for serial X-ray crystallography at X-ray free-electron lasers (XFELs), which allows for full use of the current 120-Hz repetition rate of the Linear Coherent Light Source (LCLS). Using a micropatterned silicon chip in combination with the high-speed Roadrunner goniometer for sample delivery, we were able to determine the crystal structures of the picornavirus bovine enterovirus 2 (BEV2) and the cytoplasmic polyhedrosis virus type 18 polyhedrin, with total data collection times of less than 14 and 10 min, respectively. Our method requires only micrograms of sample and should therefore broaden the applicability of serial femtosecond crystallography to challenging projects for which only limited sample amounts are available. By synchronizing the sample exchange to the XFEL repetition rate, our method allows for most efficient use of the limited beam time available at XFELs and should enable a substantial increase in sample throughput at these facilities.

[1]  Vadim Cherezov,et al.  Serial Femtosecond Crystallography of G Protein-Coupled Receptors. , 2018, Annual review of biophysics.

[2]  T. Stehle,et al.  A Sialic Acid Binding Site in a Human Picornavirus , 2014, PLoS pathogens.

[3]  Martin Warmer,et al.  Room-temperature macromolecular crystallography using a micro-patterned silicon chip with minimal background scattering , 2016, Journal of applied crystallography.

[4]  D. Filman,et al.  Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. , 1989, The EMBO journal.

[5]  Gwyndaf Evans,et al.  In situ macromolecular crystallography using microbeams , 2012, Acta crystallographica. Section D, Biological crystallography.

[6]  Anton Barty,et al.  Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography , 2014, Nature Communications.

[7]  Garth J. Williams,et al.  Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein , 2014, Science.

[8]  J. Berger,et al.  A high-transparency, micro-patternable chip for X-ray diffraction analysis of microcrystals under native growth conditions , 2015, Acta crystallographica. Section D, Biological crystallography.

[9]  S. Boutet,et al.  Serial femtosecond X-ray diffraction of enveloped virus microcrystals , 2015, Structural dynamics.

[10]  A. Brunger Version 1.2 of the Crystallography and NMR system , 2007, Nature Protocols.

[11]  David W. Smith,et al.  Macromolecular Crystallography conventional and high-throughput methods , 2007 .

[12]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[13]  Anton Barty,et al.  Macromolecular diffractive imaging using imperfect crystals , 2016, Nature.

[14]  D. Stuart,et al.  Implications for viral uncoating from the structure of bovine enterovirus , 1995, Nature Structural Biology.

[15]  Florent Cipriani,et al.  Improving diffraction by humidity control: a novel device compatible with X-ray beamlines. , 2009, Acta crystallographica. Section D, Biological crystallography.

[16]  D. Stuart,et al.  How baculovirus polyhedra fit square pegs into round holes to robustly package viruses , 2010, The EMBO journal.

[17]  Elspeth F Garman,et al.  Experimental determination of the radiation dose limit for cryocooled protein crystals. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[18]  D. Stuart,et al.  Crystal lattice as biological phenotype for insect viruses , 2005, Protein science : a publication of the Protein Society.

[19]  W. DeGrado,et al.  High-density grids for efficient data collection from multiple crystals , 2016, Acta crystallographica. Section D, Structural biology.

[20]  S. Russi,et al.  Measurement of the equilibrium relative humidity for common precipitant concentrations: facilitating controlled dehydration experiments. , 2012, Acta crystallographica. Section F, Structural biology and crystallization communications.

[21]  Keiko Ikeda,et al.  The molecular organization of cypovirus polyhedra , 2007, Nature.

[22]  J. Hajdu,et al.  Potential for biomolecular imaging with femtosecond X-ray pulses , 2000, Nature.

[23]  H. Hope Cryocrystallography of biological macromolecules: a generally applicable method. , 1988, Acta crystallographica. Section B, Structural science.

[24]  Anton Barty,et al.  Fixed-target protein serial microcrystallography with an x-ray free electron laser , 2014, Scientific Reports.

[25]  Yiping Feng,et al.  Goniometer-based femtosecond crystallography with X-ray free electron lasers , 2014, Proceedings of the National Academy of Sciences.

[26]  Clemens Schulze-Briese,et al.  Origin and temperature dependence of radiation damage in biological samples at cryogenic temperatures , 2009, Proceedings of the National Academy of Sciences.

[27]  Georg Weidenspointner,et al.  Femtosecond X-ray protein nanocrystallography , 2011, Nature.

[28]  C. David,et al.  A micro-patterned silicon chip as sample holder for macromolecular crystallography experiments with minimal background scattering , 2015, Scientific Reports.

[29]  D. Stuart,et al.  Structure of CPV17 polyhedrin determined by the improved analysis of serial femtosecond crystallographic data , 2015, Nature Communications.

[30]  R. Kuhn,et al.  Closing the door on flaviviruses: entry as a target for antiviral drug design. , 2008, Antiviral research.

[31]  Brian Nutter,et al.  A modular and compact portable mini-endstation for high-precision, high-speed fixed target serial crystallography at FEL and synchrotron sources , 2015, Journal of synchrotron radiation.

[32]  Georg Weidenspointner,et al.  Self-terminating diffraction gates femtosecond X-ray nanocrystallography measurements , 2011, Nature Photonics.

[33]  Aidin R. Balo,et al.  Fixed target matrix for femtosecond time-resolved and in situ serial micro-crystallography , 2015, Structural dynamics.

[34]  D. Stuart,et al.  In cellulo structure determination of a novel cypovirus polyhedrin , 2014, Acta crystallographica. Section D, Biological crystallography.

[35]  A. Zarrine-Afsar,et al.  Crystallography on a chip. , 2012, Acta crystallographica. Section D, Biological crystallography.

[36]  V. Cherezov,et al.  Crystallizing membrane proteins using lipidic mesophases , 2009, Nature Protocols.

[37]  D. Stuart,et al.  Polyhedra structures and the evolution of the insect viruses , 2015, Journal of structural biology.

[38]  D. Stuart,et al.  Virus crystallography , 1999, Molecular biotechnology.

[39]  Matthew J. O’Meara,et al.  Role of electrostatic repulsion in controlling pH-dependent conformational changes of viral fusion proteins. , 2013, Structure.

[40]  David I Stuart,et al.  Fixed target combined with spectral mapping: approaching 100% hit rates for serial crystallography. , 2016, Acta crystallographica. Section D, Structural biology.

[41]  Yoshiki Tanaka,et al.  Grease matrix as a versatile carrier of proteins for serial crystallography , 2014, Nature Methods.

[42]  D. Stuart,et al.  TakeTwo: an indexing algorithm suited to still images with known crystal parameters , 2016, Acta crystallographica. Section D, Structural biology.

[43]  Anton Barty,et al.  Natively Inhibited Trypanosoma brucei Cathepsin B Structure Determined by Using an X-ray Laser , 2013, Science.

[44]  T. Jardetzky,et al.  Fusing structure and function: a structural view of the herpesvirus entry machinery , 2011, Nature Reviews Microbiology.

[45]  K. Schmidt,et al.  Gas dynamic virtual nozzle for generation of microscopic droplet streams , 2008, 0803.4181.

[46]  Nicholas K. Sauter,et al.  On the release of cppxfel for processing X-ray free-electron laser images1 , 2016, Journal of applied crystallography.

[47]  O. Nureki,et al.  Oil-free hyaluronic acid matrix for serial femtosecond crystallography , 2016, Scientific Reports.

[48]  D. Stuart,et al.  Preliminary crystallographic analysis of bovine enterovirus. , 1993, Journal of molecular biology.

[49]  Anton Barty,et al.  Serial femtosecond crystallography of soluble proteins in lipidic cubic phase , 2015, IUCrJ.

[50]  Sébastien Boutet,et al.  A novel inert crystal delivery medium for serial femtosecond crystallography , 2015, IUCrJ.

[51]  C. David,et al.  Sample Preparation and Data Collection for High-Speed Fixed-Target Serial Femtosecond Crystallography , 2017 .

[52]  Oliver P. Ernst,et al.  Low-dose fixed-target serial synchrotron crystallography , 2017, Acta crystallographica. Section D, Structural biology.

[53]  Lester G. Carter,et al.  A procedure for setting up high‐throughput nanolitre crystallization experiments. Crystallization workflow for initial screening, automated storage, imaging and optimization , 2005, Acta crystallographica. Section D, Biological crystallography.

[54]  A. Zemla,et al.  Bovine enterovirus 2: complete genomic sequence and molecular modelling of a reference strain and a wild-type isolate from endemically infected US cattle. , 2004, The Journal of general virology.

[55]  Anton Barty,et al.  Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser , 2014, Nature.

[56]  Garth J. Williams,et al.  High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography , 2012, Science.