Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion

[1]  C. Priestley,et al.  On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters , 1972 .

[2]  G. Campbell,et al.  An Introduction to Environmental Biophysics , 1977 .

[3]  E. K. Webb,et al.  Correction of flux measurements for density effects due to heat and water vapour transfer , 1980 .

[4]  K. McNaughton,et al.  A mixed-layer model for regional evaporation , 1986 .

[5]  D. C. Robertson,et al.  MODTRAN: A Moderate Resolution Model for LOWTRAN , 1987 .

[6]  Wilfried Brutsaert,et al.  Application of self‐preservation in the diurnal evolution of the surface energy budget to determine daily evaporation , 1992 .

[7]  S. Verma,et al.  Eddy correlation measurement of CO2 flux using a closed-path sensor: Theory and field tests against an open-path sensor , 1993 .

[8]  J. Dudhia A Nonhydrostatic Version of the Penn State–NCAR Mesoscale Model: Validation Tests and Simulation of an Atlantic Cyclone and Cold Front , 1993 .

[9]  J. Norman,et al.  Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature , 1995 .

[10]  J. Norman,et al.  Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature [Agric. For. Meteorol., 77 (1995) 263–293]☆ , 1996 .

[11]  Martha C. Anderson,et al.  A Two-Source Time-Integrated Model for Estimating Surface Fluxes Using Thermal Infrared Remote Sensing , 1997 .

[12]  Zhao-Liang Li,et al.  A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data , 1997, IEEE Trans. Geosci. Remote. Sens..

[13]  W. Menzel,et al.  Discriminating clear sky from clouds with MODIS , 1998 .

[14]  Yann Kerr,et al.  IRSUTE: A Minisatellite Project for Land Surface Heat Flux Estimation from Field to Regional Scale , 1999 .

[15]  J. Norman,et al.  Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover , 1999 .

[16]  Dennis D. Baldocchi,et al.  Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America , 2000 .

[17]  S. Running,et al.  Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data , 2002 .

[18]  J. Norman,et al.  Remote sensing of surface energy fluxes at 101‐m pixel resolutions , 2003 .

[19]  M. Friedl,et al.  Diurnal Covariation in Soil Heat Flux and Net Radiation , 2003 .

[20]  Martha C. Anderson,et al.  Estimating subpixel surface temperatures and energy fluxes from the vegetation index-radiometric temperature relationship , 2003 .

[21]  Validation of GOES-based insolation estimates using pyranometer insolation data from the United States Climate Reference Network , 2004 .

[22]  T. Schmugge,et al.  Comparison of land surface emissivity and radiometric temperature derived from MODIS and ASTER sensors , 2004 .

[23]  Thomas J. Jackson,et al.  Utility of Remote Sensing–Based Two-Source Energy Balance Model under Low- and High-Vegetation Cover Conditions , 2005 .

[24]  E. Noordman,et al.  SEBAL model with remotely sensed data to improve water-resources management under actual field conditions , 2005 .

[25]  Andrew E. Suyker,et al.  Annual carbon dioxide exchange in irrigated and rainfed maize-based agroecosystems , 2005 .

[26]  Martha C. Anderson,et al.  Validation of GOES-Based Insolation Estimates Using Data from the U.S. Climate Reference Network , 2005 .

[27]  Robert E. Wolfe,et al.  A Landsat surface reflectance dataset for North America, 1990-2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[28]  Mathew R. Schwaller,et al.  On the blending of the Landsat and MODIS surface reflectance: predicting daily Landsat surface reflectance , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[29]  J. Wickham,et al.  Completion of the 2001 National Land Cover Database for the conterminous United States , 2007 .

[30]  C. Kucharik,et al.  Residue, respiration, and residuals: Evaluation of a dynamic agroecosystem model using eddy flux measurements and biometric data , 2007 .

[31]  K. Wiebe,et al.  Agricultural resources and environmental indicators , 2007 .

[32]  Martha C. Anderson,et al.  A climatological study of evapotranspiration and moisture stress across the continental United States based on thermal remote sensing: 1. Model formulation , 2007 .

[33]  Mutlu Ozdogan,et al.  A new methodology to map irrigated areas using multi-temporal MODIS and ancillary data: An application example in the continental US , 2008 .

[34]  M. Mccabe,et al.  Estimating Land Surface Evaporation: A Review of Methods Using Remotely Sensed Surface Temperature Data , 2008 .

[35]  Joanne C. White,et al.  Generation of dense time series synthetic Landsat data through data blending with MODIS using a spatial and temporal adaptive reflectance fusion model. , 2009 .

[36]  Xiaotong Zhang,et al.  Review on Estimation of Land Surface Radiation and Energy Budgets From Ground Measurement, Remote Sensing and Model Simulations , 2010, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[37]  L. S. Pereira,et al.  Evapotranspiration information reporting: I. Factors governing measurement accuracy , 2011 .

[38]  Christopher A. Barnes,et al.  Completion of the 2006 National Land Cover Database for the conterminous United States. , 2011 .

[39]  Paul D. Colaizzi,et al.  Evaporative loss from irrigated interrows in a highly advective semi-arid agricultural area☆ , 2012 .

[40]  Martha C. Anderson,et al.  Towards an integrated soil moisture drought monitor for East Africa , 2012 .

[41]  Martha C. Anderson,et al.  Overview of the Bushland Evapotranspiration and Agricultural Remote sensing EXperiment 2008 (BEAREX08): A field experiment evaluating methods for quantifying ET at multiple scales ☆ , 2012 .

[42]  Martha C. Anderson,et al.  Patch scale turbulence over dryland and irrigated surfaces in a semi-arid landscape under advective conditions during BEAREX08☆ , 2012 .

[43]  Feng Gao,et al.  Simple method for retrieving leaf area index from Landsat using MODIS leaf area index products as reference , 2012 .

[44]  Tim R. McVicar,et al.  Upscaling latent heat flux for thermal remote sensing studies: Comparison of alternative approaches and correction of bias , 2012 .

[45]  Martha C. Anderson,et al.  Applications of a remote sensing-based two-source energy balance algorithm for mapping surface fluxes without in situ air temperature observations ☆ , 2012 .

[46]  Martha C. Anderson,et al.  Mapping daily evapotranspiration at Landsat spatial scales during the BEAREX’08 field campaign , 2012 .

[47]  Paul D. Colaizzi,et al.  On the discrepancy between eddy covariance and lysimetry-based surface flux measurements under strongly advective conditions ☆ , 2012 .

[48]  Wade T. Crow,et al.  Spatial patterns in timing of the diurnal temperature cycle , 2013 .

[49]  Martha C. Anderson,et al.  A data fusion approach for mapping daily evapotranspiration at field scale , 2013 .