OPTICAL AND NEAR-INFRARED POLARIMETRY OF HIGHLY REDDENED Type Ia SUPERNOVA 2014J: PECULIAR PROPERTIES OF DUST IN M82

We presented optical and near-infrared multi-band linear polarimetry of the highly reddened Type Ia SN~2014J appeared in M82. SN~2014J exhibits large polarization at shorter wavelengths, e.g., $4.8$\% in $B$ band, and the polarization decreases rapidly at longer wavelengths, with the position angle of the polarization remaining at approximately $40^{\circ}$ over the observed wavelength range. These polarimetric properties suggest that the observed polarization is likely to be caused predominantly by the interstellar dust within M82. Further analysis shows that the polarization peaks at a wavelengths much shorter than those obtained for the Galactic dust. The wavelength dependence of the polarization can be better described by an inverse power law rather than by Serkowski law for Galactic interstellar polarization. These suggests that the nature of the dust in M82 may be different from that in our Galaxy, with polarizing dust grains having a mean radius of $<0.1\ \mu$m.

R. Itoh | H. Nakaya | T. Ohsugi | Y. Moritani | Y. Fukazawa | K. S. Kawabata | T. Ohsugi | K. Nomoto | R. Itoh | A. Fukui | Y. Ohashi | D. Kuroda | K. Yanagisawa | Masaomi Tanaka | A. Arai | K. Kawabata | H. Akitaya | S. Chiyonobu | Y. Fukazawa | T. Komatsu | H. Miyamoto | O. Nagae | H. Nakaya | K. Sakimoto | M. Sasada | H. Tanaka | M. Uemura | M. Yamanaka | M. Yoshida | N. Kawai | K. Maeda | M. Tanaka | D. Nogami | S. Honda | A. Nakashima | K. Maeda | K. Nomoto | D. Kuroda | S. Honda | O. Hashimoto | H. Izumiura | A. Fukui | M. Kawabata | T. Nakaoka | H. Izumiura | K. Nomoto | M. Yoshida | Y. Moritani | T. Yamashita | M. Tanaka | K. Takata | K. Matsumoto | M. Yamanaka | A. Arai | S. Chiyonobu | N. Kawai | T. Komatsu | H. Miyamoto | O. Nagae | M. Sasada | H. Tanaka | M. Uemura | K. Yanagisawa | O. Hashimoto | K. Takaki | I. Ueno | T. Urano | K. Sakimoto | D. Nogami | I. Ueno | K. Matsumoto | H. Akitaya | T. Ui | M. Kawabata | K. Mori | N. Suzuki | K. Takaki | T. Harao | R. Matsui | A. Nakashima | Y. Ohashi | H. Sato | T. Urano | N. Ebisuda | Y. Kanda | K. Kawaguchi | K. Masumoto | T. Nakaoka | K. Takata | N. Ebisuda | K. Kawaguchi | T. Ui | N. Suzuki | H. Sato | K. Masumoto | Y. Kanda | H. Sato | T. Harao | Risako Matsui | T. Yamashita | K. Mori | R. Matsui | Hiroyuki Tanaka | Y. Fukazawa | R. Itoh | N. Kawai | K. Kawabata | Keiichi Maeda | Michitoshi Yoshida | K. Matsumoto | Tatsuya Harao | Koji Mori | Nao Suzuki | Takuya Yamashita | Akira Arai | Akihiko Fukui | Satoshi Honda | Koji Takata

[1]  Shinobu Ozaki,et al.  ISLE: near-infrared imager/spectrograph for the 1.88m Telescope at Okayama Astrophysical Observatory , 2008, Astronomical Telescopes + Instrumentation.

[2]  P. E. Nugent,et al.  THE PECULIAR EXTINCTION LAW OF SN 2014J MEASURED WITH THE HUBBLE SPACE TELESCOPE , 2014, 1404.2595.

[3]  D. York,et al.  DIFFUSE INTERSTELLAR BANDS VERSUS KNOWN ATOMIC AND MOLECULAR SPECIES IN THE INTERSTELLAR MEDIUM OF M82 TOWARD SN 2014J , 2014, 1404.2639.

[4]  M. Phillips,et al.  The reddening-free decline rate versus luminosity relationship for type ia supernovae , 1999, astro-ph/9907052.

[5]  J. Maund,et al.  Spectropolarimetry of the Type Ia supernova 2012fr , 2013, 1302.0166.

[6]  Lifan Wang,et al.  Spectropolarimetry of Supernovae , 2008, 0811.1054.

[7]  J. Maund,et al.  VLT spectropolarimetry of the fast expanding type Ia SN 2006X , 2009, 0909.5564.

[8]  D. S. Mathewson,et al.  Wavelength dependence of interstellar polarization and ratio of total to selective extinction. , 1975 .

[9]  W. Hillebrandt,et al.  Type IA Supernova Explosion Models , 2000 .

[10]  C. Tao,et al.  Spectrophotometric time series of SN 2011fe from the Nearby Supernova Factory , 2013, 1302.1292.

[11]  Yukiko Kamata,et al.  Wide-field one-shot optical polarimeter: HOWPol , 2008, Astronomical Telescopes + Instrumentation.

[12]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[13]  M. Cropper,et al.  A panchromatic analysis of starburst galaxy M82: Probing the dust properties , 2014, 1401.7669.

[14]  R. Foley,et al.  IMPROVED DISTANCES TO TYPE Ia SUPERNOVAE WITH TWO SPECTROSCOPIC SUBCLASSES , 2009, 0906.1616.

[15]  D. Kasen,et al.  Spectropolarimetry of SN 2001el in NGC 1448: Asphericity of a Normal Type Ia Supernova , 2003, astro-ph/0303397.

[16]  Carl Heiles 9286 Stars: An Agglomeration of Stellar Polarization Catalogs , 2000 .

[17]  Lifan Wang,et al.  Premaximum Spectropolarimetry of the Type Ia SN 2004dt , 2004, astro-ph/0409593.

[18]  Evidence for Spectropolarimetric Diversity in Type Ia Supernovae , 2005, astro-ph/0506470.

[19]  Ralph C. Bohlin,et al.  An atlas of Hubble Space Telescope photometric, spectrophotometric, and polarimetric calibration objects , 1990 .

[20]  J. Hough,et al.  Interstellar polarization in the dust lane of Centaurus A (NGC 5128) , 1987 .

[21]  W. M. Wood-Vasey,et al.  THE INFRARED LIGHT CURVE OF SN 2011fe IN M101 AND THE DISTANCE TO M101 , 2012, 1205.3828.

[22]  Y. Ohyama,et al.  Decomposition of the Superwind in M82 , 2002 .

[23]  F. Vrba,et al.  Observations of grain and magnetic field properties of the R Coronae Australis dark cloud. , 1981 .

[24]  Lifan Wang,et al.  Polarimetry of the Type Ia Supernova SN 1996X , 1996, astro-ph/9609178.

[25]  M.Dennefeld,et al.  The rise of SN2014J in the nearby galaxy M82 , 2014 .

[26]  D. Whittet,et al.  Dust in the Galactic Environment , 2018 .

[27]  S. B. Cenko,et al.  THE RISE OF SN 2014J IN THE NEARBY GALAXY M82 , 2014 .

[28]  Wendy L. Freedman,et al.  ON THE SOURCE OF THE DUST EXTINCTION IN TYPE Ia SUPERNOVAE AND THE DISCOVERY OF ANOMALOUSLY STRONG Na i ABSORPTION , 2013, 1311.0147.

[29]  R. Kirshner,et al.  NO X-RAYS FROM THE VERY NEARBY TYPE Ia SN 2014J: CONSTRAINTS ON ITS ENVIRONMENT , 2014, 1405.1488.

[30]  Ori D. Fox,et al.  CONSTRAINTS ON THE PROGENITOR SYSTEM OF THE TYPE Ia SUPERNOVA 2014J FROM PRE-EXPLOSION HUBBLE SPACE TELESCOPE IMAGING , 2014, 1403.4250.

[31]  Atsumasa Yoshida,et al.  MITSuME--Multicolor Imaging Telescopes for Survey and Monstrous Explosions , 2005, astro-ph/0702708.

[32]  Motohide Tamura,et al.  Interstellar polarization from 3 to 5 microns in reddened stars , 1992 .

[33]  Ryosuke Itoh,et al.  HONIR: an optical and near-infrared simultaneous imager, spectrograph, and polarimeter for the 1.5-m Kanata telescope , 2014, Astronomical Telescopes and Instrumentation.

[34]  T. Nagata Observation of interstellar polarization at 2. 2 and 3. 8 microns , 1990 .

[35]  Marcia J. Lebofsky,et al.  The wavelength dependence of interstellar linear polarization. , 1980 .

[36]  Wei Zheng,et al.  ESTIMATING THE FIRST-LIGHT TIME OF THE TYPE IA SUPERNOVA 2014J IN M82 , 2014, 1401.7968.

[37]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[38]  N. Cox,et al.  Dense molecular clouds in the SN 2008fp host galaxy , 2014, 1403.4386.

[39]  Z. Paragi,et al.  CONSTRAINTS ON THE PROGENITOR SYSTEM AND THE ENVIRONS OF SN 2014J FROM DEEP RADIO OBSERVATIONS , 2014, 1405.4702.

[40]  Lifan Wang,et al.  Broadband Polarimetry of Supernovae: SN 1994D, SN 1994Y, SN 1994ae, SN 1995D, and SN 1995H , 1996, astro-ph/9602155.

[41]  W. Hillebrandt,et al.  Extensive HST ultraviolet spectra and multiwavelength observations of SN 2014J in M82 indicate reddening and circumstellar scattering by typical dust , 2014, 1405.3677.

[42]  Deviations from Axisymmetry Revealed by Line Polarization in the Normal Type Ia Supernova 2004S , 2006, astro-ph/0609405.

[43]  Kevin Krisciunas,et al.  Optical and Near-Infrared Observations of the Highly Reddened, Rapidly Expanding Type Ia Supernova SN 2006X in M100 , 2007, 0708.0140.

[44]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[45]  Detection of the red giant branch stars in m82 using the hubble space telescope , 1999, astro-ph/9906484.

[46]  J. Maund,et al.  SPECTROPOLARIMETRY OF THE TYPE Ia SN 2007sr TWO MONTHS AFTER MAXIMUM LIGHT , 2012, 1212.3619.