Comparing the enantioselective power of steric and electrostatic effects in transition-metal-catalyzed asymmetric synthesis.

The current approach to improve and tune the enantioselective performances of transition-metal catalysts for asymmetric synthesis is mostly focused to modifications of the steric properties of the ancillary ligands of the active metal. Nevertheless, it is also known that electrostatic effects can have a remarkable role to promote selectivity in asymmetric synthesis. Using the Rh-catalyzed asymmetric 1,4-addition of phenylboronic acid to 2-cyclohexenone leading to chiral 3-phenylcyclohexanone as an example, we could show that high enantioselectivity can be indeed achieved using catalysts essentially based either on steric or electrostatic effects as the main source of enantioselective induction. In this contribution we suggest that the analysis of the surface of interaction between the catalyst and the substrate could be a useful tool to quantify the power of steric and electrostatic effects of catalysts.

[1]  Julia Contreras-García,et al.  Revealing noncovalent interactions. , 2010, Journal of the American Chemical Society.

[2]  Luigi Cavallo,et al.  Thermodynamics of N-heterocyclic Carbene Dimerization: The Balance of Sterics and Electronics , 2008 .

[3]  Lin-feng Cun,et al.  A C(2)-symmetric chiral bis-sulfoxide ligand in a rhodium-catalyzed reaction: asymmetric 1,4-addition of sodium tetraarylborates to chromenones. , 2010, Journal of the American Chemical Society.

[4]  R. Noyori Asymmetrische Katalyse: Kenntnisstand und Perspektiven (Nobel-Vortrag) Copyright© The Nobel Foundation 2002. – Wir danken der Nobel-Stiftung, Stockholm, für die Genehmigung zum Druck einer deutschen Fassung des Vortrags. , 2002 .

[5]  L. Cavallo,et al.  Origin of enantioselectivity in the asymmetric Ru-catalyzed metathesis of olefins. , 2004, Journal of the American Chemical Society.

[6]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[7]  Peter G Schultz,et al.  Synthesis at the interface of chemistry and biology. , 2009, Journal of the American Chemical Society.

[8]  W. Knowles Asymmetrische Hydrierungen (Nobel-Vortrag) Copyright© The Nobel Foundation 2002. – Wir danken der Nobel-Stiftung, Stockholm, für die Genehmigung zum Druck einer deutschen Fassung des Vortrags. , 2002 .

[9]  K. Sharpless,et al.  Catalytic asymmetric epoxidation and kinetic resolution: modified procedures including in situ derivatization , 1987 .

[10]  D. Evans,et al.  Enantioselective aldol condensations. 2. Erythro-selective chiral aldol condensations via boron enolates , 1981 .

[11]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[12]  A. Ogston Ogston and the development of prochirality theory (reply) , 1978, Nature.

[13]  B. Trost,et al.  Asymmetric transition-metal-catalyzed allylic alkylations: applications in total synthesis. , 2003, Chemical reviews.

[14]  Luigi Cavallo,et al.  Flexibility of N-heterocyclic carbene ligands in ruthenium complexes relevant to olefin metathesis and their impact in the first coordination sphere of the metal. , 2010, Journal of the American Chemical Society.

[15]  Ben L. Feringa,et al.  Hochenantioselektive katalytische 1,4‐Addition und kombinierte 1,4‐Addition/Aldolreaktion von Organozinkreagentien an Enone , 1997 .

[16]  L. Cavallo,et al.  Steric and electronic effects in the bonding of N-heterocyclic ligands to transition metals , 2005 .

[17]  Andrew J. Martin,et al.  Structural families in loops of homologous proteins: automatic classification, modelling and application to antibodies. , 1996, Journal of molecular biology.

[18]  N. Miyaura,et al.  Rhodium-Catalyzed Asymmetric 1,4-Addition of Aryl- and Alkenylboronic Acids to Enones , 1998 .

[19]  Dong Li,et al.  tert‐Butanesulfinylphosphines: Simple Chiral Ligands in Rhodium‐Catalyzed Asymmetric Addition of Arylboronic Acids to Electron‐Deficient Olefins , 2010 .

[20]  J. Perdew,et al.  Erratum: Density-functional approximation for the correlation energy of the inhomogeneous electron gas , 1986, Physical review. B, Condensed matter.

[21]  Tamio Hayashi,et al.  Rhodium-catalyzed asymmetric 1,4-addition and its related asymmetric reactions. , 2003, Chemical reviews.

[22]  R. Bentley Ogston and the development of prochirality theory , 1978, Nature.

[23]  B. Feringa,et al.  Highly Enantioselective Catalytic Conjugate Addition and Tandem Conjugate Addition–Aldol Reactions of Organozinc Reagents , 1997 .

[24]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[25]  T. Sakai,et al.  Electron-poor chiral diphosphine ligands: high performance for Rh-catalyzed asymmetric 1,4-addition of arylboronic acids at room temperature. , 2009, Organic letters.

[26]  Luigi Cavallo,et al.  Identification and characterization of a new family of catalytically highly active imidazolin-2-ylidenes. , 2008, Journal of the American Chemical Society.

[27]  Justus J. Bürgi,et al.  Unprecedented selectivity via electronic substrate recognition in the 1,4-addition to cyclic olefins using a chiral disulfoxide rhodium catalyst. , 2009, Angewandte Chemie.

[28]  Ryoji Noyori Prof. Asymmetric Catalysis: Science and Opportunities (Nobel Lecture) , 2002 .

[29]  Luigi Cavallo,et al.  Mechanism of racemization of chiral alcohols mediated by 16-electron ruthenium complexes. , 2010, Journal of the American Chemical Society.

[30]  Ryoji Noyori,et al.  Asymmetric catalysis: science and opportunities (Nobel lecture). , 2002, Angewandte Chemie.

[31]  Vittorio Scarano,et al.  SambVca: A Web Application for the Calculation of the Buried Volume of N‐Heterocyclic Carbene Ligands , 2009 .

[32]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[33]  A. Bondi van der Waals Volumes and Radii , 1964 .

[34]  R. Hoffmann,et al.  Electronic and steric factors determining the asymmetric epoxidation of allylic alcohols by titanium-tartrate complexes (the Sharpless epoxidation) , 1987 .

[35]  J. Gladysz Frontiers in Metal-Catalyzed Polymerization: Designer Metallocenes, Designs on New Monomers, Demystifying MAO, Metathesis Déshabillé. , 2000, Chemical reviews.

[36]  W. Knowles Asymmetric hydrogenations (Nobel lecture). , 2002, Angewandte Chemie.

[37]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[38]  J. Christoffers,et al.  Recent Advances in Metal-Catalyzed Asymmetric Conjugate Additions , 2007 .

[39]  L. Cavallo,et al.  Understanding the M(NHC) (NHC = N-heterocyclic carbene) bond , 2009 .