Localization of the primary taste cortex by contrasting passive and attentive conditions

[1]  T. Kobayakawa,et al.  Temporal Characteristics of Neural Activity Associated with Perception of Gustatory Stimulus Intensity in Humans , 2012, Chemosensory Perception.

[2]  Thomas Hummel,et al.  Taste laterality studied by means of umami and salt stimuli: An fMRI study , 2012, NeuroImage.

[3]  D. Small,et al.  Orosensory and Homeostatic Functions of the Insular Taste Cortex , 2012, Chemosensory Perception.

[4]  M. Ikeda,et al.  Clinical study of central taste disorders and discussion of the central gustatory pathway , 2012, Journal of Neurology.

[5]  Johan N Lundström,et al.  Identification of human gustatory cortex by activation likelihood estimation , 2011, Human brain mapping.

[6]  Dana M Small,et al.  Modality-specific neural effects of selective attention to taste and odor. , 2011, Chemical senses.

[7]  T. Yoshiura,et al.  Localization of brain activation by umami taste in humans , 2011, Brain Research.

[8]  Katiuscia Sacco,et al.  Functional connectivity of the insula in the resting brain , 2011, NeuroImage.

[9]  J. Bisley The neural basis of visual attention , 2011, The Journal of physiology.

[10]  Naomi B. Pitskel,et al.  Three Systems of Insular Functional Connectivity Identified with Cluster Analysis , 2010, Cerebral cortex.

[11]  H. Lüders,et al.  Functional neuroanatomy of the insular lobe , 2010, Brain Structure and Function.

[12]  D. Small,et al.  Evidence for an integrated oral sensory module in the human anterior ventral insula. , 2010, Chemical senses.

[13]  Karl J. Friston,et al.  Dynamic causal modeling , 2010, Scholarpedia.

[14]  Dana M. Small,et al.  Taste representation in the human insula , 2010, Brain Structure and Function.

[15]  D. Gitelman,et al.  Human Neuroscience , 2022 .

[16]  Karl J. Friston,et al.  Comparing Families of Dynamic Causal Models , 2010, PLoS Comput. Biol..

[17]  A. Arnsten,et al.  Toward a New Understanding of Attention-Deficit Hyperactivity Disorder Pathophysiology , 2009, CNS Drugs.

[18]  Darren R. Gitelman,et al.  An fMRI Study of the Interactions Between the Attention and the Gustatory Networks , 2009, NeuroImage.

[19]  Jed A. Meltzer,et al.  Neural correlates of evaluative compared with passive tasting , 2009, The European journal of neuroscience.

[20]  Karl J. Friston,et al.  Bayesian model selection for group studies , 2009, NeuroImage.

[21]  T. Yoshiura,et al.  The development of a novel automated taste stimulus delivery system for fMRI studies on the human cortical segregation of taste , 2008, Journal of Neuroscience Methods.

[22]  Fabian Grabenhorst,et al.  How cognition modulates affective responses to taste and flavor: top-down influences on the orbitofrontal and pregenual cingulate cortices. , 2008, Cerebral cortex.

[23]  M. Corbetta,et al.  The Reorienting System of the Human Brain: From Environment to Theory of Mind , 2008, Neuron.

[24]  M. Casanova,et al.  Von Economo neurons are present in the dorsolateral (dysgranular) prefrontal cortex of humans , 2008, Neuroscience Letters.

[25]  Martin P. Paulus,et al.  Sucrose activates human taste pathways differently from artificial sweetener , 2008, NeuroImage.

[26]  Fabian Grabenhorst,et al.  Selective attention to affective value alters how the brain processes taste stimuli , 2008, The European journal of neuroscience.

[27]  Edmund T. Rolls,et al.  Human cortical representation of oral temperature , 2007, Physiology & Behavior.

[28]  R Todd Constable,et al.  Trying to detect taste in a tasteless solution: modulation of early gustatory cortex by attention to taste. , 2007, Chemical senses.

[29]  Edmund T Rolls,et al.  Umami: a delicious flavor formed by convergence of taste and olfactory pathways in the human brain , 2007, The European journal of neuroscience.

[30]  Edmund T Rolls,et al.  Sensory processing in the brain related to the control of food intake , 2007, Proceedings of the Nutrition Society.

[31]  G. Buracas,et al.  On-line psychophysical data acquisition and event-related fMRI protocol optimized for the investigation of brain activation in response to gustatory stimuli , 2007, Journal of Neuroscience Methods.

[32]  A. Craig,et al.  Interoception and Emotion : a Neuroanatomical Perspective , 2007 .

[33]  J. Verhagen,et al.  The neurocognitive bases of human multimodal food perception: Sensory integration , 2006, Neuroscience & Biobehavioral Reviews.

[34]  Howard Aizenstein,et al.  Neural correlates of habituation to taste stimuli in healthy women , 2006, Psychiatry Research: Neuroimaging.

[35]  Edward E. Smith,et al.  Altering expectancy dampens neural response to aversive taste in primary taste cortex , 2006, Nature Neuroscience.

[36]  Masayuki Kobayashi Functional Organization of the Human Gustatory Cortex , 2006 .

[37]  Marion Smits,et al.  A 3 T event-related functional magnetic resonance imaging (fMRI) study of primary and secondary gustatory cortex localization using natural tastants , 2006, Neuroradiology.

[38]  Tatsu Kobayakawa,et al.  Laterality of human primary gustatory cortex studied by MEG. , 2005, Chemical senses.

[39]  T Kobayakawa,et al.  Functional MRI detection of activation in the primary gustatory cortices in humans. , 2005, Chemical senses.

[40]  D. Small,et al.  Odor/taste integration and the perception of flavor , 2005, Experimental Brain Research.

[41]  C Tempelmann,et al.  Functional magnetic resonance tomography correlates of taste perception in the human primary taste cortex , 2004, Neuroscience.

[42]  Noriaki Hattori,et al.  Functional Imaging of Gustatory Perception and Imagery: Btop-downq Processing of Gustatory Signals , 2004 .

[43]  Jeffrey D Schall,et al.  On the role of frontal eye field in guiding attention and saccades , 2004, Vision Research.

[44]  Edmund T Rolls,et al.  Representation in the Human Brain of Food Texture and Oral Fat , 2004, The Journal of Neuroscience.

[45]  Morten L Kringelbach,et al.  Taste-related activity in the human dorsolateral prefrontal cortex , 2004, NeuroImage.

[46]  Joseph A Maldjian,et al.  Precentral gyrus discrepancy in electronic versions of the Talairach atlas , 2004, NeuroImage.

[47]  G. Paxinos,et al.  THE HUMAN NERVOUS SYSTEM , 1975 .

[48]  E. Rolls,et al.  Human cortical responses to water in the mouth, and the effects of thirst. , 2003, Journal of neurophysiology.

[49]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[50]  Paul J. Laurienti,et al.  An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets , 2003, NeuroImage.

[51]  E. Rolls,et al.  Representation of umami taste in the human brain. , 2003, Journal of neurophysiology.

[52]  J. Lewin Functional MRI: An introduction to methods , 2003 .

[53]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[54]  Stephen M. Smith,et al.  Functional MRI : an introduction to methods , 2002 .

[55]  J C Haselgrove,et al.  Functional magnetic resonance imaging of the visual system , 2001, Current opinion in ophthalmology.

[56]  Keith J. Worsley,et al.  Statistical analysis of activation images , 2001 .

[57]  D Le Bihan,et al.  Interaction of gustatory and lingual somatosensory perceptions at the cortical level in the human: a functional magnetic resonance imaging study. , 2001, Chemical senses.

[58]  E. Rolls,et al.  Representation of pleasant and aversive taste in the human brain. , 2001, Journal of neurophysiology.

[59]  Ravi S. Menon,et al.  Cerebral cortical representation of automatic and volitional swallowing in humans. , 2001, Journal of neurophysiology.

[60]  J. Pardo,et al.  Cortical activation induced by intraoral stimulation with water in humans. , 2000, Chemical senses.

[61]  P. F. Moortele,et al.  Human taste cortical areas studied with functional magnetic resonance imaging: evidence of functional lateralization related to handedness , 1999, Neuroscience Letters.

[62]  T. R. Scott,et al.  Taste in the Monkey Cortex , 1999, Physiology & Behavior.

[63]  P. Eslinger,et al.  Taste perception in patients with insular cortex lesions. , 1999, Behavioral neuroscience.

[64]  T Kobayakawa,et al.  Spatio-temporal analysis of cortical activity evoked by gustatory stimulation in humans. , 1999, Chemical senses.

[65]  Jonathan E. Jennings,et al.  An fMRI version of the Farnsworth-Munsell 100-Hue test reveals multiple color-selective areas in human ventral occipitotemporal cortex. , 1999, Cerebral cortex.

[66]  R J Zatorre,et al.  Human cortical gustatory areas: a review of functional neuroimaging data. , 1999, Neuroreport.

[67]  D. Le Bihan,et al.  fMRI Study of Taste Cortical Areas in Humans , 1998, Annals of the New York Academy of Sciences.

[68]  C. Büchel,et al.  Modulation of connectivity in visual pathways by attention: cortical interactions evaluated with structural equation modelling and fMRI. , 1997, Cerebral cortex.

[69]  Alan C. Evans,et al.  Gustatory cortex: Comparative architectonic analysis in the human and the macaque brain and functional data , 1996, NeuroImage.

[70]  L. F. Barrett,et al.  Handbook of Emotions , 1993 .

[71]  E T Rolls,et al.  Gustatory responses of single neurons in the insula of the macaque monkey. , 1990, Journal of neurophysiology.

[72]  David P. Friedman,et al.  Cortical connections of the somatosensory fields of the lateral sulcus of macaques: Evidence for a corticolimbic pathway for touch , 1986, The Journal of comparative neurology.

[73]  M. Mesulam,et al.  Insula of the old world monkey. Architectonics in the insulo‐orbito‐temporal component of the paralimbic brain , 1982, The Journal of comparative neurology.