Motivation-based Hierarchical Behavior Planning
暂无分享,去创建一个
This paper describes a motivation-based hierarchical behavior planning framework to allow autonomous agents to select adaptive actions in simulation game environments. The combined behavior planning system is formed by four levels of specification, which are motivation extraction, goal list generation, action list determination and optimization. Our model increases the complexity of virtual human behavior planning by adding motivation with sudden and cumulative attributes. The motivation selection by probability distribution allows NPC to make multiple decisions in certain situations in order to embody realistic virtual humans. Hierarchical goal tree enhances the effective reactivity. Optimizing for potential actions provides NPC with safe and satisfying actions to adapt to the virtual environment. A restaurant simulation game was used to elucidate the mechanism of the framework.