A Quorum Sensing Regulated Small Volatile Molecule Reduces Acute Virulence and Promotes Chronic Infection Phenotypes

A significant number of environmental microorganisms can cause serious, even fatal, acute and chronic infections in humans. The severity and outcome of each type of infection depends on the expression of specific bacterial phenotypes controlled by complex regulatory networks that sense and respond to the host environment. Although bacterial signals that contribute to a successful acute infection have been identified in a number of pathogens, the signals that mediate the onset and establishment of chronic infections have yet to be discovered. We identified a volatile, low molecular weight molecule, 2-amino acetophenone (2-AA), produced by the opportunistic human pathogen Pseudomonas aeruginosa that reduces bacterial virulence in vivo in flies and in an acute mouse infection model. 2-AA modulates the activity of the virulence regulator MvfR (multiple virulence factor regulator) via a negative feedback loop and it promotes the emergence of P. aeruginosa phenotypes that likely promote chronic lung infections, including accumulation of lasR mutants, long-term survival at stationary phase, and persistence in a Drosophila infection model. We report for the first time the existence of a quorum sensing (QS) regulated volatile molecule that induces bistability phenotype by stochastically silencing acute virulence functions in P. aeruginosa. We propose that 2-AA mediates changes in a subpopulation of cells that facilitate the exploitation of dynamic host environments and promote gene expression changes that favor chronic infections.

[1]  D. Jahn,et al.  Anaerobic physiology of Pseudomonas aeruginosa in the cystic fibrosis lung. , 2010, International journal of medical microbiology : IJMM.

[2]  S. Häussler Multicellular signalling and growth of Pseudomonas aeruginosa. , 2010, International journal of medical microbiology : IJMM.

[3]  R. Laing,et al.  2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung , 2010, BMC pulmonary medicine.

[4]  L. Rahme,et al.  Homeostatic Interplay between Bacterial Cell-Cell Signaling and Iron in Virulence , 2010, PLoS pathogens.

[5]  D. Hassett,et al.  Pseudomonas aeruginosa biofilm infections in cystic fibrosis: insights into pathogenic processes and treatment strategies , 2010, Expert opinion on therapeutic targets.

[6]  Samuel I. Miller,et al.  Nutrient Availability as a Mechanism for Selection of Antibiotic Tolerant Pseudomonas aeruginosa within the CF Airway , 2010, PLoS pathogens.

[7]  N. Perrimon,et al.  Synergy between bacterial infection and genetic predisposition in intestinal dysplasia , 2009, Proceedings of the National Academy of Sciences.

[8]  M. Cámara,et al.  Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: a tale of regulatory networks and multifunctional signal molecules. , 2009, Current opinion in microbiology.

[9]  E. Pesci,et al.  PqsE Functions Independently of PqsR-Pseudomonas Quinolone Signal and Enhances the rhl Quorum-Sensing System , 2008, Journal of bacteriology.

[10]  F. Lépine,et al.  Burkholderia pseudomallei, B. thailandensis, and B. ambifaria Produce 4-Hydroxy-2-Alkylquinoline Analogues with a Methyl Group at the 3 Position That Is Required for Quorum-Sensing Regulation , 2008, Journal of bacteriology.

[11]  E. Greenberg,et al.  The Influence of Iron on Pseudomonas aeruginosa Physiology , 2008, Journal of Biological Chemistry.

[12]  B. Birren,et al.  Dynamics of Pseudomonas aeruginosa genome evolution , 2008, Proceedings of the National Academy of Sciences.

[13]  L. Rahme,et al.  Use of the lambda Red recombinase system to rapidly generate mutants in Pseudomonas aeruginosa , 2008, BMC Molecular Biology.

[14]  J. Hoffmann,et al.  The Drosophila systemic immune response: sensing and signalling during bacterial and fungal infections , 2007, Nature Reviews Immunology.

[15]  R. Tompkins,et al.  Inhibitors of Pathogen Intercellular Signals as Selective Anti-Infective Compounds , 2007, PLoS pathogens.

[16]  L. Rahme,et al.  PqsA is required for the biosynthesis of 2,4-dihydroxyquinoline (DHQ), a newly identified metabolite produced by Pseudomonas aeruginosa and Burkholderia thailandensis , 2007, Biological chemistry.

[17]  Jeroen S. Dickschat,et al.  Bacterial volatiles: the smell of small organisms. , 2007, Natural product reports.

[18]  David A. D'Argenio,et al.  Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients , 2007, Molecular microbiology.

[19]  L. Rahme,et al.  MvfR, a key Pseudomonas aeruginosa pathogenicity LTTR‐class regulatory protein, has dual ligands , 2006, Molecular microbiology.

[20]  S. Diggle,et al.  Functional genetic analysis reveals a 2-Alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria. , 2006, Chemistry & biology.

[21]  Stephen Lory,et al.  A Virulence Locus of Pseudomonas aeruginosa Encodes a Protein Secretion Apparatus , 2006, Science.

[22]  L. Rahme,et al.  Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry. , 2006, Microbiology.

[23]  Pradeep K. Singh,et al.  Evolving stealth: genetic adaptation of Pseudomonas aeruginosa during cystic fibrosis infections. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[24]  David A. D'Argenio,et al.  Genetic adaptation by Pseudomonas aeruginosa to the airways of cystic fibrosis patients. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[25]  S. Diggle,et al.  Quorum Quenching by an N-Acyl-Homoserine Lactone Acylase from Pseudomonas aeruginosa PAO1 , 2006, Infection and Immunity.

[26]  E. Shiner,et al.  Inter-kingdom signaling: deciphering the language of acyl homoserine lactones. , 2005, FEMS microbiology reviews.

[27]  Lars Bohlin,et al.  Rediscovery of known natural compounds: nuisance or goldmine? , 2005, Trends in pharmacological sciences.

[28]  A. Oliver,et al.  Hypermutation Is a Key Factor in Development of Multiple-Antimicrobial Resistance in Pseudomonas aeruginosa Strains Causing Chronic Lung Infections , 2005, Antimicrobial Agents and Chemotherapy.

[29]  E. Pesci,et al.  Regulation of Pseudomonas Quinolone Signal Synthesis in Pseudomonas aeruginosa , 2005, Journal of bacteriology.

[30]  Eric Déziel,et al.  The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing‐regulated genes are modulated without affecting lasRI, rhlRI or the production of N‐acyl‐ l‐homoserine lactones , 2004, Molecular microbiology.

[31]  S. Lory,et al.  A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. , 2004, Developmental cell.

[32]  S. McColley,et al.  Type III Secretion Phenotypes of Pseudomonas aeruginosa Strains Change during Infection of Individuals with Cystic Fibrosis , 2004, Journal of Clinical Microbiology.

[33]  S. Leibler,et al.  Bacterial Persistence as a Phenotypic Switch , 2004, Science.

[34]  L. Rahme,et al.  Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa , 2004, Journal of the American Society for Mass Spectrometry.

[35]  M. Thattai,et al.  Stochastic Gene Expression in Fluctuating Environments , 2004, Genetics.

[36]  Daniel G. Lee,et al.  The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[37]  R. Tompkins,et al.  Analysis of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines (HAQs) reveals a role for 4-hydroxy-2-heptylquinoline in cell-to-cell communication. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  J. Ghigo,et al.  A rapid and simple method for inactivating chromosomal genes in Yersinia. , 2003, FEMS immunology and medical microbiology.

[39]  R. Tompkins,et al.  The Drosophila melanogaster Toll Pathway Participates in Resistance to Infection by the Gram-Negative Human Pathogen Pseudomonas aeruginosa , 2003, Infection and Immunity.

[40]  L. Rahme,et al.  A stable isotope dilution assay for the quantification of the Pseudomonas quinolone signal in Pseudomonas aeruginosa cultures. , 2003, Biochimica et biophysica acta.

[41]  Marina S. Kuznetsova,et al.  Functions Required for Extracellular Quinolone Signaling by Pseudomonas aeruginosa , 2002, Journal of bacteriology.

[42]  R. Ramphal,et al.  FleQ, the Major Flagellar Gene Regulator in Pseudomonas aeruginosa, Binds to Enhancer Sites Located Either Upstream or Atypically Downstream of the RpoN Binding Site , 2002, Journal of bacteriology.

[43]  L. Rahme,et al.  A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[44]  K. M. Lee,et al.  QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[45]  A. Oliver,et al.  High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. , 2000, Science.

[46]  T. Köhler,et al.  Characterization of MexT, the Regulator of the MexE-MexF-OprN Multidrug Efflux System of Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[47]  P. Seed,et al.  RsaL, a Novel Repressor of Virulence Gene Expression in Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[48]  N. Gotoh,et al.  Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa , 1997, Molecular microbiology.

[49]  F. Ausubel,et al.  Common virulence factors for bacterial pathogenicity in plants and animals. , 1995, Science.

[50]  C. Ryan,et al.  A quantitative model of invasive Pseudomonas infection in burn injury. , 1994, The Journal of burn care & rehabilitation.

[51]  J. Leyden,et al.  Headspace analysis of volatile metabolites of Pseudomonas aeruginosa and related species by gas chromatography-mass spectrometry , 1980, Journal of clinical microbiology.

[52]  C. D. Cox,et al.  Use of 2-aminoacetophenone production in identification of Pseudomonas aeruginosa , 1979, Journal of clinical microbiology.

[53]  M. Kurachi Studies on the Biosynthesis of Pyocyanine. (II) : Isolation and Determination of Pyocyanine , 1958 .

[54]  L. Rahme,et al.  Drosophila melanogaster as a model host for studying Pseudomonas aeruginosa infection , 2009, Nature Protocols.

[55]  T. Tolker-Nielsen,et al.  Effects of iron on DNA release and biofilm development by Pseudomonas aeruginosa. , 2007, Microbiology.

[56]  Bonnie L. Bassler,et al.  Bacterially Speaking , 2006, Cell.