Topological constraints and their breakdown in dynamical evolution
暂无分享,去创建一个
[1] Mitsuo Yokokawa,et al. 16.4-Tflops Direct Numerical Simulation of Turbulence by a Fourier Spectral Method on the Earth Simulator , 2002, ACM/IEEE SC 2002 Conference (SC'02).
[2] Leonhard Euler. Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti , 2013, 1307.7187.
[3] A. Wilmot-Smith,et al. Topological constraints on magnetic relaxation. , 2010, Physical review letters.
[4] J. Dubochet,et al. Geometry and physics of knots , 1996, Nature.
[5] F. B. Fuller. The writhing number of a space curve. , 1971, Proceedings of the National Academy of Sciences of the United States of America.
[6] M. Berger,et al. SELF-ORGANIZED BRAIDING AND THE STRUCTURE OF CORONAL LOOPS , 2009 .
[7] Michael E Fisher,et al. Velocity statistics distinguish quantum turbulence from classical turbulence. , 2008, Physical review letters.
[8] Marco Cavenago,et al. COHERENT STRUCTURES AND TURBULENCE IN ELECTRON PLASMAS , 2007 .
[9] Raymond E. Goldstein,et al. Soap-film Möbius strip changes topology with a twist singularity , 2010, Proceedings of the National Academy of Sciences.
[10] W. Minicozzi,et al. Shapes of embedded minimal surfaces. , 2006, Proceedings of the National Academy of Sciences of the United States of America.
[11] R Volk,et al. Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. , 2007, Physical review letters.
[12] C. Levinthal,et al. ON THE UNWINDING OF DNA. , 1956, Proceedings of the National Academy of Sciences of the United States of America.
[13] J. Dubochet,et al. Sedimentation and electrophoretic migration of DNA knots and catenanes. , 1998, Journal of molecular biology.
[14] Richard Courant,et al. Soap Film Experiments with Minimal Surfaces , 1940 .
[15] E. L. Zechiedrich,et al. DNA disentangling by type-2 topoisomerases. , 2004, Journal of molecular biology.
[16] A. Boudaoud,et al. The Helicoid versus the Catenoid: Geometrically Induced Bifurcations , 1999 .
[17] Louis H. Kauffman,et al. Quantum knots and mosaics , 2008, Quantum Inf. Process..
[18] Thomas W. Kephart,et al. A Model of glueballs , 2002, hep-ph/0209339.
[19] T. G. Myers,et al. SURFACE TENSION DRIVEN THIN FILM FLOWS , 1996 .
[20] Marko,et al. Statistical mechanics of supercoiled DNA. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[21] Renzo L. Ricca,et al. An introduction to the geometry and topology of fluid flows , 2001 .
[22] J. B. Taylor,et al. Relaxation of toroidal plasma and generation of reverse magnetic fields , 1974 .
[23] J. Luhmann,et al. ROTATION OF CORONAL MASS EJECTIONS DURING ERUPTION , 2009 .
[24] Dorian M. Raymer,et al. Spontaneous knotting of an agitated string , 2007, Proceedings of the National Academy of Sciences.
[25] Renzo L. Ricca,et al. Writhing and coiling of closed filaments , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[26] Eric J. Rawdon,et al. Conservation of complex knotting and slipknotting patterns in proteins , 2012, Proceedings of the National Academy of Sciences.
[27] J. Berger,et al. Structural basis for gate-DNA recognition and bending by type IIA topoisomerases , 2007, Nature.
[28] T. Rado. The problem of the least area and the problem of Plateau , 1930 .
[29] L. Driel-Gesztelyi,et al. Transient Coronal Sigmoids and Rotating Erupting Flux Ropes , 2007 .
[30] R. Osserman. A survey of minimal surfaces , 1969 .
[31] Peter Virnau,et al. Intricate Knots in Proteins: Function and Evolution , 2006, PLoS Comput. Biol..
[32] L. Woltjer,et al. A THEOREM ON FORCE-FREE MAGNETIC FIELDS. , 1958, Proceedings of the National Academy of Sciences of the United States of America.
[33] H. K. Moffatt. Topological aspects of the dynamics of fluids and plasmas , 1992 .
[34] N R Cozzarelli,et al. Discovery of a predicted DNA knot substantiates a model for site-specific recombination. , 1985, Science.
[35] James H. White. Self-Linking and the Gauss Integral in Higher Dimensions , 1969 .
[36] F. Almgren,et al. Plateau's problem : an invitation to varifold geometry , 1968 .
[37] W. Thomson. 4. On Vortex Atoms , 1869 .
[38] Thomas W. Kephart,et al. Glueballs and the universal energy spectrum of tight knots and links , 2005 .
[39] B. Audoly,et al. Elastic knots. , 2007, Physical review letters.
[40] D. Lathrop,et al. Characterization of reconnecting vortices in superfluid helium , 2008, Proceedings of the National Academy of Sciences.
[41] Daniel P. Lathrop,et al. SUPERFLUID HELIUM: Visualization of quantized vortices , 2006, Nature.
[42] M. Steenbeck,et al. Berechnung der mittleren Lorentz-Feldstärke für ein elektrisch leitendes Medium in turbulenter, durch Coriolis-Kräfte beeinflußter Bewegung , 1966 .
[43] G. Călugăreanu. Sur les classes d'isotopie des noeuds tridimensionnels et leurs invariants , 1961 .
[44] Nathaniel D. Robinson,et al. Observations of Singularity Formation during the Capillary Collapse and Bubble Pinch-off of a Soap Film Bridge , 2001 .
[45] Richard Courant,et al. Plateau’s Problem , 1950 .
[46] A. Flammini,et al. Local selection rules that can determine specific pathways of DNA unknotting by type II DNA topoisomerases , 2007, Nucleic acids research.
[47] Raymond E. Goldstein,et al. Dynamic Supercoiling Bifurcations of Growing Elastic Filaments , 2003, cond-mat/0312563.
[48] H. K. Moffatt. Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 1. Fundamentals , 1985, Journal of Fluid Mechanics.
[49] H. K. Moffatt,et al. Topological fluid mechanics : proceedings of the IUTAM Symposium, Cambridge, UK, 13-18 August 1989 , 1990 .
[50] John R. Lister,et al. Capillary pinch-off in inviscid fluids , 2003 .
[51] H. K. Moffatt,et al. The degree of knottedness of tangled vortex lines , 1969, Journal of Fluid Mechanics.
[52] K. Turitsyn,et al. Asymmetric disconnection of an underwater air bubble: persistent neck vibrations evolve into a smooth contact. , 2009, Physical review letters.
[53] J. Douglas. One-sided minimal surfaces with a given boundary , 1932 .
[54] N. Cozzarelli,et al. Processive recombination by wild-type gin and an enhancer-independent mutant. Insight into the mechanisms of recombination selectivity and strand exchange. , 1994, Journal of molecular biology.
[55] H. K. Moffatt,et al. Lectures on Topological Fluid Mechanics , 2009 .
[56] Quantum knots , 2008, 0802.1318.
[57] B. Khesin. Topological fluid dynamics , 2005 .
[58] H. K. Moffatt. Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 2. Stability considerations , 1986, Journal of Fluid Mechanics.
[59] Tait. XXVII.—On Knots. Part III , 1886, Transactions of the Royal Society of Edinburgh.
[60] S. Hutzler,et al. The dynamics of a topological change in a system of soap films , 2008 .
[61] J. Dubochet,et al. Electrophoretic mobility of DNA knots , 1996, Nature.
[62] Tubes, Sheets and Singularities in Fluid Dynamics , 2002 .
[63] David P. DiVincenzo,et al. Quantum information and computation , 2000, Nature.
[64] Eugene N. Parker,et al. Spontaneous current sheets in magnetic fields : with applications to stellar x-rays , 1994 .