Topological constraints and their breakdown in dynamical evolution

A variety of physical and biological systems exhibit dynamical behaviour that has some explicit or implicit topological features. Here, the term ‘topological’ is meant to convey the idea of structures, e.g. physical knots, links or braids, that have some measure of invariance under continuous deformation. Dynamical evolution is then subject to the topological constraints that express this invariance. The simplest problem arising in these systems is the determination of minimum-energy structures (and routes towards these structures) permitted by such constraints, and elucidation of mechanisms by which the constraints may be broken. In more complex nonequilibrium cases there can be recurring singularities associated with topological rearrangements driven by continuous injection of energy. In this brief overview, motivated by an upcoming program on ‘Topological Dynamics in the Physical and Biological Sciences’ at the Isaac Newton Institute for Mathematical Sciences, we present a summary of this class of dynamical systems and discuss examples of important open problems.

[1]  Mitsuo Yokokawa,et al.  16.4-Tflops Direct Numerical Simulation of Turbulence by a Fourier Spectral Method on the Earth Simulator , 2002, ACM/IEEE SC 2002 Conference (SC'02).

[2]  Leonhard Euler Methodus inveniendi lineas curvas maximi minimive proprietate gaudentes, sive solutio problematis isoperimetrici latissimo sensu accepti , 2013, 1307.7187.

[3]  A. Wilmot-Smith,et al.  Topological constraints on magnetic relaxation. , 2010, Physical review letters.

[4]  J. Dubochet,et al.  Geometry and physics of knots , 1996, Nature.

[5]  F. B. Fuller The writhing number of a space curve. , 1971, Proceedings of the National Academy of Sciences of the United States of America.

[6]  M. Berger,et al.  SELF-ORGANIZED BRAIDING AND THE STRUCTURE OF CORONAL LOOPS , 2009 .

[7]  Michael E Fisher,et al.  Velocity statistics distinguish quantum turbulence from classical turbulence. , 2008, Physical review letters.

[8]  Marco Cavenago,et al.  COHERENT STRUCTURES AND TURBULENCE IN ELECTRON PLASMAS , 2007 .

[9]  Raymond E. Goldstein,et al.  Soap-film Möbius strip changes topology with a twist singularity , 2010, Proceedings of the National Academy of Sciences.

[10]  W. Minicozzi,et al.  Shapes of embedded minimal surfaces. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[11]  R Volk,et al.  Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. , 2007, Physical review letters.

[12]  C. Levinthal,et al.  ON THE UNWINDING OF DNA. , 1956, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Dubochet,et al.  Sedimentation and electrophoretic migration of DNA knots and catenanes. , 1998, Journal of molecular biology.

[14]  Richard Courant,et al.  Soap Film Experiments with Minimal Surfaces , 1940 .

[15]  E. L. Zechiedrich,et al.  DNA disentangling by type-2 topoisomerases. , 2004, Journal of molecular biology.

[16]  A. Boudaoud,et al.  The Helicoid versus the Catenoid: Geometrically Induced Bifurcations , 1999 .

[17]  Louis H. Kauffman,et al.  Quantum knots and mosaics , 2008, Quantum Inf. Process..

[18]  Thomas W. Kephart,et al.  A Model of glueballs , 2002, hep-ph/0209339.

[19]  T. G. Myers,et al.  SURFACE TENSION DRIVEN THIN FILM FLOWS , 1996 .

[20]  Marko,et al.  Statistical mechanics of supercoiled DNA. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[21]  Renzo L. Ricca,et al.  An introduction to the geometry and topology of fluid flows , 2001 .

[22]  J. B. Taylor,et al.  Relaxation of toroidal plasma and generation of reverse magnetic fields , 1974 .

[23]  J. Luhmann,et al.  ROTATION OF CORONAL MASS EJECTIONS DURING ERUPTION , 2009 .

[24]  Dorian M. Raymer,et al.  Spontaneous knotting of an agitated string , 2007, Proceedings of the National Academy of Sciences.

[25]  Renzo L. Ricca,et al.  Writhing and coiling of closed filaments , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  Eric J. Rawdon,et al.  Conservation of complex knotting and slipknotting patterns in proteins , 2012, Proceedings of the National Academy of Sciences.

[27]  J. Berger,et al.  Structural basis for gate-DNA recognition and bending by type IIA topoisomerases , 2007, Nature.

[28]  T. Rado The problem of the least area and the problem of Plateau , 1930 .

[29]  L. Driel-Gesztelyi,et al.  Transient Coronal Sigmoids and Rotating Erupting Flux Ropes , 2007 .

[30]  R. Osserman A survey of minimal surfaces , 1969 .

[31]  Peter Virnau,et al.  Intricate Knots in Proteins: Function and Evolution , 2006, PLoS Comput. Biol..

[32]  L. Woltjer,et al.  A THEOREM ON FORCE-FREE MAGNETIC FIELDS. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[33]  H. K. Moffatt Topological aspects of the dynamics of fluids and plasmas , 1992 .

[34]  N R Cozzarelli,et al.  Discovery of a predicted DNA knot substantiates a model for site-specific recombination. , 1985, Science.

[35]  James H. White Self-Linking and the Gauss Integral in Higher Dimensions , 1969 .

[36]  F. Almgren,et al.  Plateau's problem : an invitation to varifold geometry , 1968 .

[37]  W. Thomson 4. On Vortex Atoms , 1869 .

[38]  Thomas W. Kephart,et al.  Glueballs and the universal energy spectrum of tight knots and links , 2005 .

[39]  B. Audoly,et al.  Elastic knots. , 2007, Physical review letters.

[40]  D. Lathrop,et al.  Characterization of reconnecting vortices in superfluid helium , 2008, Proceedings of the National Academy of Sciences.

[41]  Daniel P. Lathrop,et al.  SUPERFLUID HELIUM: Visualization of quantized vortices , 2006, Nature.

[42]  M. Steenbeck,et al.  Berechnung der mittleren Lorentz-Feldstärke für ein elektrisch leitendes Medium in turbulenter, durch Coriolis-Kräfte beeinflußter Bewegung , 1966 .

[43]  G. Călugăreanu Sur les classes d'isotopie des noeuds tridimensionnels et leurs invariants , 1961 .

[44]  Nathaniel D. Robinson,et al.  Observations of Singularity Formation during the Capillary Collapse and Bubble Pinch-off of a Soap Film Bridge , 2001 .

[45]  Richard Courant,et al.  Plateau’s Problem , 1950 .

[46]  A. Flammini,et al.  Local selection rules that can determine specific pathways of DNA unknotting by type II DNA topoisomerases , 2007, Nucleic acids research.

[47]  Raymond E. Goldstein,et al.  Dynamic Supercoiling Bifurcations of Growing Elastic Filaments , 2003, cond-mat/0312563.

[48]  H. K. Moffatt Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 1. Fundamentals , 1985, Journal of Fluid Mechanics.

[49]  H. K. Moffatt,et al.  Topological fluid mechanics : proceedings of the IUTAM Symposium, Cambridge, UK, 13-18 August 1989 , 1990 .

[50]  John R. Lister,et al.  Capillary pinch-off in inviscid fluids , 2003 .

[51]  H. K. Moffatt,et al.  The degree of knottedness of tangled vortex lines , 1969, Journal of Fluid Mechanics.

[52]  K. Turitsyn,et al.  Asymmetric disconnection of an underwater air bubble: persistent neck vibrations evolve into a smooth contact. , 2009, Physical review letters.

[53]  J. Douglas One-sided minimal surfaces with a given boundary , 1932 .

[54]  N. Cozzarelli,et al.  Processive recombination by wild-type gin and an enhancer-independent mutant. Insight into the mechanisms of recombination selectivity and strand exchange. , 1994, Journal of molecular biology.

[55]  H. K. Moffatt,et al.  Lectures on Topological Fluid Mechanics , 2009 .

[56]  Quantum knots , 2008, 0802.1318.

[57]  B. Khesin Topological fluid dynamics , 2005 .

[58]  H. K. Moffatt Magnetostatic equilibria and analogous Euler flows of arbitrarily complex topology. Part 2. Stability considerations , 1986, Journal of Fluid Mechanics.

[59]  Tait XXVII.—On Knots. Part III , 1886, Transactions of the Royal Society of Edinburgh.

[60]  S. Hutzler,et al.  The dynamics of a topological change in a system of soap films , 2008 .

[61]  J. Dubochet,et al.  Electrophoretic mobility of DNA knots , 1996, Nature.

[62]  Tubes, Sheets and Singularities in Fluid Dynamics , 2002 .

[63]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[64]  Eugene N. Parker,et al.  Spontaneous current sheets in magnetic fields : with applications to stellar x-rays , 1994 .