Machine-Learning Studies on Spin Models
暂无分享,去创建一个
Hwee Kuan Lee | Yutaka Okabe | Kenta Shiina | Hiroyuki Mori | H. Lee | Y. Okabe | H. Mori | K. Shiina
[1] Roger G. Melko,et al. Machine learning phases of matter , 2016, Nature Physics.
[2] R. B. Potts. Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.
[3] Wang,et al. Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.
[4] Jimmy Ba,et al. Adam: A Method for Stochastic Optimization , 2014, ICLR.
[5] Y. Okabe,et al. Berezinskii–Kosterlitz–Thouless transition on regular and Villain types of q-state clock models , 2019, Journal of Physics A: Mathematical and Theoretical.
[6] V. L. Berezinskit. DESTRUCTION OF LONG-RANGE ORDER IN ONE-DIMENSIONAL AND TWO-DIMENSIONAL SYSTEMS POSSESSING A CONTINUOUS SYMMETRY GROUP . II . QUANTUM , 2011 .
[7] F. Y. Wu. The Potts model , 1982 .
[8] J. Kosterlitz,et al. The critical properties of the two-dimensional xy model , 1974 .
[9] B. M. Fulk. MATH , 1992 .
[10] K. Binder,et al. A Guide to Monte Carlo Simulations in Statistical Physics: Preface , 2005 .
[11] Martín Abadi,et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.
[12] Stefan Wessel,et al. Parameter diagnostics of phases and phase transition learning by neural networks , 2018, Physical Review B.
[13] Finite-size scaling of correlation ratio and generalized scheme for the probability-changing cluster algorithm , 2002, cond-mat/0210074.
[14] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[15] Tzu-Chieh Wei,et al. Machine learning of phase transitions in the percolation and XY models. , 2018, Physical review. E.
[16] Roger G. Melko,et al. Machine learning vortices at the Kosterlitz-Thouless transition , 2017, 1710.09842.
[17] Weber,et al. Monte Carlo determination of the critical temperature for the two-dimensional XY model. , 1988, Physical review. B, Condensed matter.
[18] Joaquin F. Rodriguez-Nieva,et al. Identifying topological order through unsupervised machine learning , 2018, Nature Physics.
[19] D. Thouless,et al. Ordering, metastability and phase transitions in two-dimensional systems , 1973 .
[20] Naoki Kawashima,et al. Universal jump in the helicity modulus of the two-dimensional quantum XY model , 1997 .
[21] V. Berezinsky,et al. Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems , 1970 .