Nanometre-scale electronics with III–V compound semiconductors

For 50 years the exponential rise in the power of electronics has been fuelled by an increase in the density of silicon complementary metal–oxide–semiconductor (CMOS) transistors and improvements to their logic performance. But silicon transistor scaling is now reaching its limits, threatening to end the microelectronics revolution. Attention is turning to a family of materials that is well placed to address this problem: group III–V compound semiconductors. The outstanding electron transport properties of these materials might be central to the development of the first nanometre-scale logic transistors.

[1]  H. Becke,et al.  Gallium arsenide MOS transistors , 1965 .

[2]  N. Yokoyama,et al.  GaAs microwave MOSFET's , 1978, IEEE Transactions on Electron Devices.

[3]  I. Lindau,et al.  Unified defect model and beyond , 1980 .

[4]  Wlodzimierz Nakwaski,et al.  Thermal conductivity of binary, ternary, and quaternary III‐V compounds , 1988 .

[5]  S. Laux,et al.  Are GaAs MOSFETs worth building? A model-based comparison of Si and GaAs n-MOSFETs , 1989, International Technical Digest on Electron Devices Meeting.

[6]  R. Opila,et al.  In-situ Ga/sub 2/O/sub 3/ process for GaAs inversion/accumulation device and surface passivation applications , 1995, Proceedings of International Electron Devices Meeting.

[7]  J. Kwo,et al.  Enhancement-mode p-channel GaAs MOSFETs on semi-insulating substrates , 1996, International Electron Devices Meeting. Technical Digest.

[8]  M. Passlack,et al.  Quasistatic and high frequency capacitance–voltage characterization of Ga2O3–GaAs structures fabricated by in situ molecular beam epitaxy , 1996 .

[9]  J. Kwo,et al.  Recombination velocity at oxide–GaAs interfaces fabricated by in situ molecular beam epitaxy , 1996 .

[10]  J. Kwo,et al.  Demonstration of enhancement-mode p- and n-channel GaAs MOSFETS with Ga2O3(Gd2O3) As gate oxide , 1997 .

[11]  High performance 0.25 [micro sign]m p-type Ge/SiGe MODFETs , 1998 .

[12]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[13]  David J. Frank,et al.  Power-constrained CMOS scaling limits , 2002, IBM J. Res. Dev..

[14]  A. Kummel,et al.  Self-aligned GaAs p-channel enhancement mode MOS heterostructure field-effect transistor , 2002, IEEE Electron Device Letters.

[15]  J. Kavalieros,et al.  High performance fully-depleted tri-gate CMOS transistors , 2003, IEEE Electron Device Letters.

[16]  J. Kwo,et al.  GaAs MOSFET with oxide gate dielectric grown by atomic layer deposition , 2003, IEEE Electron Device Letters.

[17]  David A. Muller,et al.  HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition , 2005 .

[18]  S. Pearton,et al.  Dry Etching of Electronic Oxides, Polymers, and Semiconductors , 2005 .

[19]  B. Ryu,et al.  High performance 5nm radius Twin Silicon Nanowire MOSFET (TSNWFET) : fabrication on bulk si wafer, characteristics, and reliability , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[20]  In-Situ Ga 2 O 3 Process for GaAs Inversion / Accumulation Device and Surface Passivation Apptications , 2005 .

[21]  Y. J. Lee,et al.  Surface passivation of III-V compound semiconductors using atomic-layer-deposition grown Al2O3 , 2005 .

[22]  P. Ye,et al.  Capacitance-voltage studies on enhancement-mode InGaAs metal-oxide-semiconductor field-effect transistor using atomic-layer-deposited Al2O3 gate dielectric , 2006 .

[23]  A. Lochtefeld,et al.  Inversion-type enhancement-mode InP MOSFETs with ALD Al2O3, HfO2 and HfAlO nanolaminates as high-k gate dielectrics , 2007, 2007 65th Annual Device Research Conference.

[24]  S. Datta,et al.  Heterogeneous integration of enhancement mode in0.7ga0.3as quantum well transistor on silicon substrate using thin (les 2 μm) composite buffer architecture for high-speed and low-voltage ( 0.5 v) logic applications , 2007, 2007 IEEE International Electron Devices Meeting.

[25]  Single n-InAs Nanowire MIS-Field-Effect Transistor: Experimental and Simulation Results , 2007, 2007 IEEE 19th International Conference on Indium Phosphide & Related Materials.

[26]  J. Kavalieros,et al.  Integrated nanoelectronics for the future. , 2007, Nature materials.

[27]  J. B. Boos,et al.  Mobility enhancement in strained p-InGaSb quantum wells , 2007 .

[28]  Robert M. Wallace,et al.  GaAs interfacial self-cleaning by atomic layer deposition , 2008 .

[29]  E. Vogel,et al.  Half-cycle atomic layer deposition reaction studies of Al2O3 on (NH4)2S passivated GaAs(100) surfaces , 2008 .

[30]  J. B. Boos,et al.  Strained GaSb/AlAsSb quantum wells for p-channel field-effect transistors , 2008 .

[31]  T. Ma,et al.  Properties of InAs metal-oxide-semiconductor structures with atomic-layer-deposited Al2O3 Dielectric , 2008 .

[32]  Mark J. W. Rodwell,et al.  Ultralow resistance in situ Ohmic contacts to InGaAs/InP , 2008 .

[33]  P. Hashemi,et al.  Electron transport in Gate-All-Around uniaxial tensile strained-Si nanowire n-MOSFETs , 2008, 2008 IEEE International Electron Devices Meeting.

[34]  G. Dewey,et al.  High-performance 40nm gate length InSb p-channel compressively strained quantum well field effect transistors for low-power (VCC=0.5V) logic applications , 2008, 2008 IEEE International Electron Devices Meeting.

[35]  Daehyun Kim,et al.  30 nm E-mode InAs PHEMTs for THz and future logic applications , 2008, 2008 IEEE International Electron Devices Meeting.

[36]  Howard Huff Into The Nano Era: Moore's Law Beyond Planar Silicon CMOS , 2008 .

[37]  Atomic-layer-deposited Al2O3/GaAs metal-oxide-semiconductor field-effect transistor on Si substrate using aspect ratio trapping technique , 2008 .

[38]  D.A. Antoniadis,et al.  MOSFET Performance Scaling—Part I: Historical Trends , 2008, IEEE Transactions on Electron Devices.

[39]  Hetero-epitaxy of III-V compounds lattice-matched to InP by MOCVD for device applications , 2009, 2009 IEEE International Conference on Indium Phosphide & Related Materials.

[40]  R. Chau,et al.  Logic performance evaluation and transport physics of Schottky-gate III–V compound semiconductor quantum well field effect transistors for power supply voltages (VCC) ranging from 0.5v to 1.0v , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[41]  Daehyun Kim,et al.  Quantum capacitance in scaled down III–V FETs , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[42]  Mario G. Ancona,et al.  Engineering of strained III–V heterostructures for high hole mobility , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[43]  D. Antoniadis,et al.  Extraction of virtual-source injection velocity in sub-100 nm III–V HFETs , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[44]  P. Ye,et al.  Inversion-Mode Inxga1-Xas Mosfets (X=0.53,0.65,0.75) with Atomic-Layerdeposited High-K Dielectrics , 2009 .

[45]  Y. Yeo,et al.  Lattice-Mismatched $\hbox{In}_{0.4}\hbox{Ga}_{0.6} \hbox{As}$ Source/Drain Stressors With In Situ Doping for Strained $\hbox{In}_{0.53}\hbox{Ga}_{0.47}\hbox{As}$ Channel n-MOSFETs , 2009, IEEE Electron Device Letters.

[46]  G. Pourtois,et al.  A theoretical study of the initial oxidation of the GaAs(001)-β2(2×4) surface , 2009 .

[47]  New insight into Fermi-level unpinning on GaAs: Impact of different surface orientations , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[48]  H. Iwai,et al.  Roadmap for 22 nm and beyond , 2009 .

[49]  G. Dewey,et al.  Advanced high-K gate dielectric for high-performance short-channel In0.7Ga0.3As quantum well field effect transistors on silicon substrate for low power logic applications , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[50]  J. Smet,et al.  MBE growth of ultra-low disorder 2DEG with mobility exceeding 35×106 cm2/V s , 2009 .

[51]  S. Stemmer,et al.  Metal-oxide-semiconductor capacitors with ZrO2 dielectrics grown on In0.53Ga0.47As by chemical beam deposition , 2009 .

[52]  Hiroshi Iwai,et al.  Roadmap for 22nm and beyond (Invited Paper) , 2009 .

[53]  Changwook Jeong,et al.  On Backscattering and Mobility in Nanoscale Silicon MOSFETs , 2009, IEEE Transactions on Electron Devices.

[54]  G. D. Hutcheson The Economic Implications of Moore’s Law , 2009 .

[55]  P. D. Ye,et al.  High Performance Deep-Submicron Inversion-Mode InGaAs MOSFETs with maximum Gm exceeding 1.1 mS/µm: New HBr pretreatment and channel engineering , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[56]  M. Takenaka,et al.  High Electron Mobility Metal–Insulator–Semiconductor Field-Effect Transistors Fabricated on (111)-Oriented InGaAs Channels , 2009 .

[57]  Dae-Hyun Kim,et al.  30-nm InAs PHEMTs With $f_{T} = \hbox{644}\ \hbox{GHz}$ and $f_{\max} = \hbox{681}\ \hbox{GHz}$ , 2010, IEEE Electron Device Letters.

[58]  E. Lind,et al.  Vertical InAs nanowire wrap gate transistors with f(t) > 7 GHz and f(max) > 20 GHz. , 2010, Nano letters.

[59]  J. B. Boos,et al.  Development of high-k dielectric for antimonides and a sub 350°C III–V pMOSFET outperforming Germanium , 2010, 2010 International Electron Devices Meeting.

[60]  G. Dewey,et al.  Non-planar, multi-gate InGaAs quantum well field effect transistors with high-K gate dielectric and ultra-scaled gate-to-drain/gate-to-source separation for low power logic applications , 2010, 2010 International Electron Devices Meeting.

[61]  Peide D. Ye,et al.  Fundamentals of III-V Semiconductor MOSFETs , 2010 .

[62]  M. Passlack,et al.  Suitability Study of Oxide/Gallium Arsenide Interfaces for MOSFET Applications , 2010, IEEE Transactions on Electron Devices.

[63]  M. Hudait,et al.  The influences of surface treatment and gas annealing conditions on the inversion behaviors of the atomic-layer-deposition Al2O3/n-In0.53Ga0.47As metal-oxide-semiconductor capacitor , 2010 .

[64]  Logic characteristics of 40 nm thin-channel InAs HEMTs , 2010, 2010 22nd International Conference on Indium Phosphide and Related Materials (IPRM).

[65]  Y. J. Lee,et al.  Engineering of threshold voltages in molecular beam epitaxy-grown Al2O3∕Ga2O3(Gd2O3)∕In0.2Ga0.8As , 2010 .

[66]  Weichao Wang,et al.  Impact of Interfacial Oxygen Content on Bonding, Stability, Band Offsets, and Interface States of GaAs:HfO2 Interfaces , 2010 .

[67]  P. Ye,et al.  Heteroepitaxy of single-crystal LaLuO3 on GaAs(111)A by atomic layer deposition , 2010 .

[68]  Jesús A. del Alamo,et al.  30-nm InAs PHEMTs With fT = 644 GHz and fmax = 681 GHz , 2010 .

[69]  A. Lochtefeld,et al.  (Invited) Aspect Ratio Trapping: A Unique Technology for Integrating Ge and III-Vs with Silicon CMOS , 2010 .

[70]  D. Antoniadis,et al.  Device Physics and Performance Potential of III-V Field-Effect Transistors , 2010 .

[71]  Dae-Hyun Kim,et al.  A Self-Aligned InGaAs HEMT Architecture for Logic Applications , 2009, IEEE Transactions on Electron Devices.

[72]  Peter Chen,et al.  50-nm E-mode In0.7Ga0.3As PHEMTs on 100-mm InP substrate with fmax > 1 THz , 2010, 2010 International Electron Devices Meeting.

[73]  G. Dewey,et al.  High mobility strained germanium quantum well field effect transistor as the p-channel device option for low power (Vcc = 0.5 V) III–V CMOS architecture , 2010, 2010 International Electron Devices Meeting.

[74]  Hyunhyub Ko,et al.  Ultrathin compound semiconductor on insulator layers for high-performance nanoscale transistors , 2010, Nature.

[75]  Kelin J. Kuhn,et al.  (Invited) Past, Present and Future: SiGe and CMOS Transistor Scaling , 2010, ECS Transactions.

[76]  Daehyun Kim,et al.  60 nm self-aligned-gate InGaAs HEMTs with record high-frequency characteristics , 2010, 2010 International Electron Devices Meeting.

[77]  S. Takagi,et al.  Extremely-thin-body InGaAs-on-insulator MOSFETs on Si fabricated by direct wafer bonding , 2010, 2010 International Electron Devices Meeting.

[78]  Mark Y. Liu,et al.  Technology Options for 22 nm and Beyond , 2010 .

[79]  Jack C. Lee,et al.  Electrical and material characteristics of hafnium oxide with silicon interface passivation on III-V substrate for future scaled cmos technology , 2010 .

[80]  L. Gomez,et al.  Enhanced Hole Mobility in High Ge Content Asymmetrically Strained-SiGe p-MOSFETs , 2010, IEEE Electron Device Letters.

[81]  M. Huang,et al.  First-principles study of GaAs(001)-β2(2×4) surface oxidation and passivation with H, Cl, S, F, and GaO , 2010 .

[82]  Paul M. Solomon,et al.  In Quest of the “Next Switch”: Prospects for Greatly Reduced Power Dissipation in a Successor to the Silicon Field-Effect Transistor , 2010, Proceedings of the IEEE.

[83]  Fluorinated HfO2 gate dielectric engineering on In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistors , 2010 .

[84]  A. Leuther,et al.  20 NM metamorphic HEMT WITH 660 GHZ FT , 2011, IPRM 2011 - 23rd International Conference on Indium Phosphide and Related Materials.

[85]  Electron Scattering in Buried InGaAs/High-k MOS Channels , 2011 .

[86]  P. Hurley,et al.  A systematic study of (NH4)2S passivation (22%, 10%, 5%, or 1%) on the interface properties of the Al2O3/In0.53Ga0.47As/InP system for n-type and p-type In0.53Ga0.47As epitaxial layers , 2011 .

[87]  J. Robertson,et al.  Defect states at III-V semiconductor oxide interfaces , 2011 .

[88]  Injection velocity in thin-channel InAs HEMTs , 2011, IPRM 2011 - 23rd International Conference on Indium Phosphide and Related Materials.

[89]  G. Bersuker,et al.  Remote phonon and surface roughness limited universal electron mobility of In0.53Ga0.47As surface channel MOSFETs , 2011 .

[90]  “Zero” drain-current drift of inversion-mode NMOSFET on InP (111)A surface , 2011, 69th Device Research Conference.

[91]  Eugene A. Fitzgerald,et al.  The effect of interface processing on the distribution of interfacial defect states and the C-V characteristics of III-V metal-oxide-semiconductor field effect transistors , 2011 .

[92]  del Alamo,et al.  The High-Electron Mobility Transistor at 30: Impressive Accomplishments and Exciting Prospects , 2011 .

[93]  G. Bersuker,et al.  On the calculation of effective electric field in In0.53Ga0.47As surface channel metal-oxide-semiconductor field-effect-transistors , 2011 .

[94]  Isabelle Ferain,et al.  Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors , 2011, Nature.

[95]  J. B. Boos,et al.  Hole mobility enhancement in In0.41Ga0.59Sb quantum-well field-effect transistors , 2011 .

[96]  A. Javey,et al.  Strain engineering of epitaxially transferred, ultrathin layers of III-V semiconductor on insulator , 2011 .

[97]  Dimitri A. Antoniadis,et al.  III–V CMOS: What have we learned from HEMTs? , 2011, IPRM 2011 - 23rd International Conference on Indium Phosphide and Related Materials.

[98]  Yasuyuki Miyamoto,et al.  InP/InGaAs Composite Metal–Oxide–Semiconductor Field-Effect Transistors with Regrown Source and Al2O3 Gate Dielectric Exhibiting Maximum Drain Current Exceeding 1.3 mA/µm , 2011 .

[99]  ELECTRON SCATTERING IN BURIED InGaAs/HIGH-K MOS CHANNELS , 2013 .