A microRNA profile of human CD8+ regulatory T cells and characterization of the effects of microRNAs on Treg cell-associated genes

[1]  A. Burny,et al.  A microRNA profile of human CD8+ regulatory T cells and characterization of the effects of microRNAs on Treg cell-associated genes , 2014, Journal of Translational Medicine.

[2]  G. Bommer,et al.  GARP Is Regulated by miRNAs and Controls Latent TGF-β1 Production by Human Regulatory T Cells , 2013, PloS one.

[3]  Jonathan H. Esensten,et al.  microRNA-17–92 Regulates IL-10 Production by Regulatory T Cells and Control of Experimental Autoimmune Encephalomyelitis , 2013, The Journal of Immunology.

[4]  P. Lipsky,et al.  miR-142-3p Is Involved in CD25+ CD4 T Cell Proliferation by Targeting the Expression of Glycoprotein A Repetitions Predominant , 2013, The Journal of Immunology.

[5]  P. Romero,et al.  MicroRNA-155 is required for effector CD8+ T cell responses to virus infection and cancer. , 2013, Immunity.

[6]  H. Weiner,et al.  Identification of Cytolytic CD161−CD56+ Regulatory CD8 T Cells in Human Peripheral Blood , 2013, PloS one.

[7]  G. Shen,et al.  miR-1423 p restricts cAMP production in CD 4 þ CD 25 T cells and CD 4 þ CD 25 þ TREG cells by targeting AC 9 mRNA , 2013 .

[8]  A. Burny,et al.  MicroRNA Profile of Circulating CD4-positive Regulatory T Cells in Human Adults and Impact of Differentially Expressed MicroRNAs on Expression of Two Genes Essential to Their Function* , 2012, The Journal of Biological Chemistry.

[9]  F. Locatelli,et al.  T(reg) cells: collection, processing, storage and clinical use. , 2011, Pathology, research and practice.

[10]  T. Ha The Role of MicroRNAs in Regulatory T Cells and in the Immune Response , 2011, Immune network.

[11]  A. La Cava,et al.  CD8+ Tregs in lupus, autoimmunity, and beyond. , 2010, Autoimmunity reviews.

[12]  P. Coulie,et al.  Membrane protein GARP is a receptor for latent TGF‐β on the surface of activated human Treg , 2009, European journal of immunology.

[13]  E. Shevach,et al.  GARP (LRRC32) is essential for the surface expression of latent TGF-β on platelets and activated FOXP3+ regulatory T cells , 2009, Proceedings of the National Academy of Sciences.

[14]  D. Unutmaz,et al.  Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells , 2009, Proceedings of the National Academy of Sciences.

[15]  Zhe Shi,et al.  Human CD8+CXCR3+ T cells have the same function as murine CD8+CD122+ Treg , 2009, European journal of immunology.

[16]  A. Burny,et al.  Human natural Treg microRNA signature: Role of microRNA‐31 and microRNA‐21 in FOXP3 expression , 2009, European journal of immunology.

[17]  G. Shen,et al.  miR‐142‐3p restricts cAMP production in CD4+CD25− T cells and CD4+CD25+ TREG cells by targeting AC9 mRNA , 2009, EMBO reports.

[18]  Hana Lee,et al.  Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. , 2009, Immunity.

[19]  G. Burmester,et al.  CTLA-4 (CD152) controls homeostasis and suppressive capacity of regulatory T cells in mice. , 2009, Arthritis and rheumatism.

[20]  S. Ziegler,et al.  Functional Analysis of FOXP3 , 2008, Annals of the New York Academy of Sciences.

[21]  F. Slack,et al.  Small non-coding RNAs in animal development , 2008, Nature Reviews Molecular Cell Biology.

[22]  A. Williams,et al.  Functional aspects of animal microRNAs , 2008, Cellular and Molecular Life Sciences.

[23]  S. Barry,et al.  Isolation, propagation and characterization of cord blood derived CD4+ CD25+ regulatory T cells. , 2007, Journal of immunological methods.

[24]  G. Calin,et al.  miRNAs and their potential for use against cancer and other diseases. , 2007, Future oncology.

[25]  D. Olive,et al.  CD8+CD28− T Regulatory Lymphocytes Inhibiting T Cell Proliferative and Cytotoxic Functions Infiltrate Human Cancers1 , 2007, The Journal of Immunology.

[26]  H. Blum,et al.  Parallel Expansion of Human Virus-Specific FoxP3− Effector Memory and De Novo-Generated FoxP3+ Regulatory CD8+ T Cells upon Antigen Recognition In Vitro1 , 2007, The Journal of Immunology.

[27]  L. Lim,et al.  MicroRNA targeting specificity in mammals: determinants beyond seed pairing. , 2007, Molecular cell.

[28]  T. Ottenhoff,et al.  Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4 , 2007, Proceedings of the National Academy of Sciences.

[29]  C. Macedo,et al.  EBV‐Specific CD8+ T Cell Reactivation in Transplant Patients Results in Expansion of CD8+ Type‐1 Regulatory T Cells , 2007, American journal of transplantation : official journal of the American Society of Transplantation and the American Society of Transplant Surgeons.

[30]  F. J. Livesey,et al.  A role for Dicer in immune regulation , 2006, The Journal of experimental medicine.

[31]  V. Narry Kim,et al.  Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing , 2006, Nucleic acids research.

[32]  I. T. Ten Berge,et al.  CD103 Is a Marker for Alloantigen-Induced Regulatory CD8+ T Cells , 2006, The Journal of Immunology.

[33]  Byoung-Tak Zhang,et al.  Molecular Basis for the Recognition of Primary microRNAs by the Drosha-DGCR8 Complex , 2006, Cell.

[34]  Nitin J. Karandikar,et al.  Therapeutic Induction of Regulatory, Cytotoxic CD8+ T Cells in Multiple Sclerosis1 , 2006, The Journal of Immunology.

[35]  D. Roelen,et al.  Differential distribution of CD4(+)CD25(bright) and CD8(+)CD28(-) T-cells in decidua and maternal blood during human pregnancy. , 2006, Placenta.

[36]  V. Kim,et al.  Drosha in primary microRNA processing. , 2006, Cold Spring Harbor symposia on quantitative biology.

[37]  B. Comin-Anduix,et al.  Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[38]  S. Le,et al.  siRNA, miRNA and HIV: promises and challenges , 2005, Cell Research.

[39]  B. Bisikirska,et al.  TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. , 2005, The Journal of clinical investigation.

[40]  R. Shiekhattar,et al.  TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing , 2005, Nature.

[41]  J. Ioannidis,et al.  CTLA-4 gene polymorphisms and susceptibility to type 1 diabetes mellitus: a HuGE Review and meta-analysis. , 2005, American journal of epidemiology.

[42]  L. Mayer,et al.  Activation of CD8+ Regulatory T Cells by Human Placental Trophoblasts1 , 2005, The Journal of Immunology.

[43]  Atsushi Nakazawa,et al.  Defects in CD8+ Regulatory T Cells in the Lamina Propria of Patients with Inflammatory Bowel Disease 1 , 2005, The Journal of Immunology.

[44]  K. Gunsalus,et al.  Combinatorial microRNA target predictions , 2005, Nature Genetics.

[45]  A. Dejean,et al.  Identification of a novel natural regulatory CD8 T-cell subset and analysis of its mechanism of regulation. , 2004, Blood.

[46]  T. Nomura,et al.  Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. , 2004, International immunology.

[47]  J. M. Thomson,et al.  Argonaute2 Is the Catalytic Engine of Mammalian RNAi , 2004, Science.

[48]  Junchao Cai,et al.  Minor H Antigen HA-1–specific Regulator and Effector CD8+ T Cells, and HA-1 Microchimerism, in Allograft Tolerance , 2004, The Journal of experimental medicine.

[49]  Andreas Radbruch,et al.  CD152 (CTLA-4) Determines the Unequal Resistance of Th1 and Th2 Cells against Activation-induced Cell Death by a Mechanism Requiring PI3 Kinase Function , 2004, The Journal of experimental medicine.

[50]  K. Czaplinski,et al.  Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. , 2004, RNA.

[51]  U. Kutay,et al.  Nuclear Export of MicroRNA Precursors , 2004, Science.

[52]  C. Ariyan,et al.  Cutting Edge: Transplantation Tolerance through Enhanced CTLA-4 Expression 1 , 2003, The Journal of Immunology.

[53]  L. Cosmi,et al.  Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. , 2003, Blood.

[54]  B. Simon,et al.  Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain , 2003, Nature.

[55]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[56]  F. Ramsdell,et al.  An essential role for Scurfin in CD4+CD25+ T regulatory cells , 2003, Nature Immunology.

[57]  A. Rudensky,et al.  Foxp3 programs the development and function of CD4+CD25+ regulatory T cells , 2003, Nature Immunology.

[58]  T. Nomura,et al.  Control of Regulatory T Cell Development by the Transcription Factor Foxp3 , 2002 .

[59]  G. Vlad,et al.  Regulatory CD8+CD28- T cells in heart transplant recipients. , 2003, Human immunology.

[60]  N. Déglon,et al.  Lentiviral-mediated RNA interference. , 2002, Human gene therapy.

[61]  F. Wong,et al.  Autoreactive CD8 T cells in organ-specific autoimmunity: emerging targets for therapeutic intervention. , 2002, Immunity.

[62]  M. Gilliet,et al.  Generation of Human CD8 T Regulatory Cells by CD40 Ligand–activated Plasmacytoid Dendritic Cells , 2002, The Journal of experimental medicine.

[63]  M. Colonna,et al.  Tolerization of dendritic cells by TS cells: the crucial role of inhibitory receptors ILT3 and ILT4 , 2002, Nature Immunology.

[64]  J. Goverman,et al.  A Pathogenic Role for Myelin-Specific Cd8+ T Cells in a Model for Multiple Sclerosis , 2001, The Journal of experimental medicine.

[65]  A. Sette,et al.  Virus‐specific CD8+ T cells with type 1 or type 2 cytokine profile are related to different disease activity in chronic hepatitis C virus infection , 2001, European journal of immunology.

[66]  H. Ochs,et al.  The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3 , 2001, Nature Genetics.

[67]  J. Casanova,et al.  X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy , 2001, Nature Genetics.

[68]  K. Campbell,et al.  Minimum Requirements for Efficient Transduction of Dividing and Nondividing Cells by Feline Immunodeficiency Virus Vectors , 1999, Journal of Virology.

[69]  Luigi Naldini,et al.  Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo , 1997, Nature Biotechnology.

[70]  M. Eckhaus,et al.  Allospecific CD8+ Tc1 and Tc2 populations in graft-versus-leukemia effect and graft-versus-host disease. , 1996, Journal of immunology.

[71]  F. Gage,et al.  In Vivo Gene Delivery and Stable Transduction of Nondividing Cells by a Lentiviral Vector , 1996, Science.

[72]  T. Olsson,et al.  Depletion of CD8+ T cells suppresses the development of experimental autoimmune myasthenia gravis in Lewis rats , 1995, European journal of immunology.

[73]  P. Martin,et al.  Donor CD8 cells prevent allogeneic marrow graft rejection in mice: potential implications for marrow transplantation in humans , 1993, The Journal of experimental medicine.

[74]  M. Sporn,et al.  Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor beta after antigen-specific triggering. , 1992, Proceedings of the National Academy of Sciences of the United States of America.