Recent Advances in Oscillation Theory 2011

1 Department of Mathematics and Mathematical Statistics, Umea University, 901 87 Umea, Sweden 2 Department of Mathematics, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel 3 Department of Mathematics and Statistics, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada T2N1N4 4 Department of Mathematics, Faculty of Electrical Engineering and Computer Science, Brno University of Technology, 616 00 Brno, Czech Republic

[1]  H. M. Daniali,et al.  The variational iteration method for nonlinear oscillators with discontinuities , 2007 .

[2]  Marvin J. Greenberg Lectures on algebraic topology , 1967 .

[3]  P. Hartman Ordinary Differential Equations , 1965 .

[4]  Bifurcation from a periodic orbit in perturbed planar Hamiltonian systems , 2003 .

[5]  S. Gallego,et al.  Application of a modified He’s homotopy perturbation method to obtain higher-order approximations to a nonlinear oscillator with discontinuities , 2009 .

[6]  W. A. Coppel Dichotomies in Stability Theory , 1978 .

[7]  D. W. Krumme,et al.  Differential-difference equations and nonlinear initial-boundary value problems for linear hyperbolic partial differential equations , 1968 .

[8]  Dan Kalman,et al.  Advanced Plane Topology From an Elementary Standpoint , 1980 .

[9]  Ravi P. Agarwal,et al.  Dynamic equations on time scales: a survey , 2002 .

[10]  N. Khan,et al.  Multiple-Parameter Hamiltonian Approach for Higher Accurate Approximations of a Nonlinear Oscillator with Discontinuity , 2011 .

[11]  N. Khan,et al.  On Efficient Method for System of Fractional Differential Equations , 2011 .

[12]  Mahdi Fathizadeh,et al.  Homotopy Perturbation Algorithm using Laplace Transformation , 2010 .

[13]  Supriya Mukherjee,et al.  Solution of the Duffing–van der Pol oscillator equation by a differential transform method , 2011 .

[14]  S. Hilger Analysis on Measure Chains — A Unified Approach to Continuous and Discrete Calculus , 1990 .

[15]  Zhenlai Han,et al.  Oscillation of second-order delay dynamic equations on time scales , 2009 .

[16]  Najeeb Alam Khan,et al.  Analytical Study of Navier-Stokes Equation with Fractional Orders Using He's Homotopy Perturbation and Variational Iteration Methods , 2009 .

[17]  M. Bohner,et al.  Philos type criteria for second-order half-linear dynamic equations , 2011 .

[18]  Samir H. Saker,et al.  Oscillation criteria for second-order nonlinear delay dynamic equations , 2007 .

[19]  Ji-Huan He,et al.  The homotopy perturbation method for nonlinear oscillators with discontinuities , 2004, Appl. Math. Comput..

[20]  John Franks,et al.  Generalizations of the Poincaré-Birkhoff Theorem , 1988 .

[21]  S. Momani,et al.  Application of Variational Iteration Method to Nonlinear Differential Equations of Fractional Order , 2006 .

[22]  V. G. Angelov,et al.  Lossy transmision lines terminated by R-loads with exponential V–I characteristics , 2007 .

[23]  Samir H. Saker,et al.  Oscillation Criteria for Second‐Order Nonlinear Dynamic Equations On Time Scales , 2003 .

[24]  Ji-Huan He,et al.  Max-Min Approach to Nonlinear Oscillators , 2008 .

[25]  Sol Rosenstark Transmission lines in computer engineering , 1994 .

[26]  M. Shimura,et al.  Analysis of Some Nonlinear Phenomena in a Transmission Line , 1967, IEEE Transactions on Circuit Theory.

[27]  Ji-Huan He,et al.  Hamiltonian approach to nonlinear oscillators , 2010 .

[28]  Dahua Shou,et al.  Variational approach to the nonlinear oscillator of a mass attached to a stretched wire , 2008 .

[29]  Ahmet Yildirim,et al.  A study of nonlinear oscillators with u1/3 force by He's variational iteration method , 2007 .

[30]  M. Brown,et al.  Proof of the Poincaré-Birkhoff fixed point theorem. , 1977 .

[31]  A. J. Ureña,et al.  The star‐shaped condition on Ding's version of the Poincaré–Birkhoff theorem , 2007 .

[32]  K. Palmer A generalization of Hartman's linearization theorem☆ , 1973 .

[33]  Ji-Huan He Variational approach for nonlinear oscillators , 2007 .

[34]  Martin Bohner,et al.  Oscillation of Second Order Nonlinear Dynamic Equations on Time Scales , 2004 .

[35]  E. Moise Geometric Topology in Dimensions 2 and 3 , 1977 .

[36]  Ravi P. Agarwal,et al.  Philos-Type Oscillation Criteria for Second Order Half-Linear Dynamic Equations on Time Scales , 2007 .

[37]  Najeeb Alam Khan,et al.  An efficient approach for solving the Riccati equation with fractional orders , 2011, Comput. Math. Appl..

[38]  A. Y. T. Leung,et al.  The iterative homotopy harmonic balance method for conservative Helmholtz-Duffing oscillators , 2010, Appl. Math. Comput..

[39]  N. Meyers,et al.  H = W. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[40]  C. Rebelo A note on the Poincaré-Birkhoff fixed point theorem and periodic solutions of planar systems , 1997 .

[41]  Hong-Mei Liu,et al.  Approximate period of nonlinear oscillators with discontinuities by modified Lindstedt–Poincare method , 2005 .

[42]  Ji-Huan He,et al.  A simple approach to nonlinear oscillators , 2009 .

[43]  Metin O. Kaya,et al.  Application of Parameter Expanding Methods to Nonlinear Oscillators with Discontinuities , 2008 .

[44]  Lei Wang,et al.  Oscillation of second-order nonlinear delay dynamic equations on time scales , 2011, Comput. Math. Appl..

[45]  B. G. Pachpatte,et al.  Inequalities for differential and integral equations , 1998 .

[46]  Ravi P. Agarwal,et al.  Oscillation of Second Order Delay Dynamic Equations , 2005 .

[47]  F. Zanolin,et al.  Chaos in periodically perturbed planar Hamiltonian systems using linked twist maps , 2010 .

[48]  Augusto Beléndez,et al.  Application of a modified He's homotopy perturbation method to obtain higher-order approximations of an x1/3 force nonlinear oscillator , 2007 .

[49]  Leon O. Chua,et al.  Linear and nonlinear circuits , 1987 .

[50]  J. Franks Erratum to "Generalizations of the Poincare-Birkhoff theorem" , 2006 .

[51]  R. Brayton Nonlinear oscillations in a distributed network , 1967 .

[52]  B. G. Pachpatte On Some New Inequalities Related to Certain Inequalities in the Theory of Differential Equations , 1995 .

[53]  Taher S. Hassan,et al.  Oscillation criteria for half-linear dynamic equations on time scales , 2008 .

[54]  Jinde Cao,et al.  A new analytical method for the linearization of dynamic equation on measure chains , 2007 .

[55]  A. Ebaid A reliable aftertreatment for improving the differential transformation method and its application to nonlinear oscillators with fractional nonlinearities , 2011 .

[56]  A. Berarducci,et al.  Uniform quasi components, thin spaces and compact separation ? ? The first and the second author wer , 2002 .

[57]  Ji-Huan He,et al.  Resonance in Sirospun yarn spinning using a variational iteration method , 2007, Computers and Mathematics with Applications.

[58]  P. Hartman On the local linearization of differential equations , 1963 .

[59]  F. Zanolin,et al.  Maslov index, Poincaré-Birkhoff Theorem and Periodic Solutions of Asymptotically Linear Planar Hamiltonian Systems , 2002 .

[60]  Y. Şahı˙ner,et al.  Oscillation of second-order delay differential equations on time scales , 2005 .

[61]  Najeeb Alam Khan,et al.  Approximate Solution of Time-Fractional Chemical Engineering Equations: A Comparative Study , 2010 .