Eleven grand challenges in single-cell data science

[1]  N. McGranahan,et al.  Clonal Heterogeneity and Tumor Evolution: Past, Present, and the Future , 2017, Cell.

[2]  David Tse,et al.  Towards a post-clustering test for differential expression , 2018, bioRxiv.

[3]  N. Beerenwinkel,et al.  Tree inference for single-cell data , 2016, bioRxiv.

[4]  S. Richardson,et al.  Correcting the Mean-Variance Dependency for Differential Variability Testing Using Single-Cell RNA Sequencing Data , 2018, Cell systems.

[5]  Adela Saco,et al.  Validation of Whole-Slide Imaging for Histolopathogical Diagnosis: Current State , 2016, Pathobiology.

[6]  Method of the Year 2013 , 2013, Nature Methods.

[7]  Andrew C. Adey,et al.  Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. , 2018, Molecular cell.

[8]  A. Regev,et al.  Spatial reconstruction of single-cell gene expression , 2015, Nature Biotechnology.

[9]  Elmar Eisemann,et al.  Hierarchical Stochastic Neighbor Embedding , 2016, Comput. Graph. Forum.

[10]  Daniel L. Ayres Research And Application Of Parallel Computing Algorithms For Statistical Phylogenetic Inference , 2017 .

[11]  Elmar Eisemann,et al.  Visual analysis of mass cytometry data by hierarchical stochastic neighbour embedding reveals rare cell types , 2017, Nature Communications.

[12]  Rameen Beroukhim,et al.  Genome coverage and sequence fidelity of phi29 polymerase-based multiple strand displacement whole genome amplification. , 2004, Nucleic acids research.

[13]  Tobias Marschall,et al.  Enhancing sensitivity and controlling false discovery rate in somatic indel discovery , 2019, bioRxiv.

[14]  Paola Bonizzoni,et al.  Inferring cancer progression from Single-Cell Sequencing while allowing mutation losses , 2018, bioRxiv.

[15]  Zhi Huang,et al.  LAmbDA: label ambiguous domain adaptation dataset integration reduces batch effects and improves subtype detection , 2019, Bioinform..

[16]  Eytan Ruppin,et al.  Predicting Cancer-Specific Vulnerability via Data-Driven Detection of Synthetic Lethality , 2014, Cell.

[17]  M. Hemberg,et al.  Challenges in unsupervised clustering of single-cell RNA-seq data , 2019, Nature Reviews Genetics.

[18]  Christoph Ziegenhain,et al.  powsimR: Power analysis for bulk and single cell RNA-seq experiments , 2017, bioRxiv.

[19]  M. Schaap,et al.  The hidden cost of using low-resolution concentration data in the estimation of NH3 dry deposition fluxes , 2018, Scientific Reports.

[20]  Xiang Zhou,et al.  Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis , 2019, Genome Biology.

[21]  Lana X. Garmire,et al.  DeepImpute: an accurate, fast, and scalable deep neural network method to impute single-cell RNA-seq data , 2018, Genome Biology.

[22]  Huw A. Ogilvie,et al.  StarBEAST2 Brings Faster Species Tree Inference and Accurate Estimates of Substitution Rates , 2016, bioRxiv.

[23]  P. Kharchenko,et al.  Bayesian approach to single-cell differential expression analysis , 2014, Nature Methods.

[24]  George D. Cresswell,et al.  Exploiting evolutionary herding to control drug resistance in cancer , 2019, bioRxiv.

[25]  Il-Youp Kwak,et al.  DrImpute: imputing dropout events in single cell RNA sequencing data , 2017, BMC Bioinformatics.

[26]  Sanghamitra Bandyopadhyay,et al.  dropClust: efficient clustering of ultra-large scRNA-seq data , 2017, bioRxiv.

[27]  Sohrab P. Shah,et al.  Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution , 2014, Nature.

[28]  Chao Zhang,et al.  Single-Cell Data Analysis Using MMD Variational Autoencoder for a More Informative Latent Representation , 2019, bioRxiv.

[29]  Ruibin Xi,et al.  scRMD: Imputation for single cell RNA-seq data via robust matrix decomposition , 2018, bioRxiv.

[30]  C. Greene,et al.  Parameter tuning is a key part of dimensionality reduction via deep variational autoencoders for single cell RNA transcriptomics , 2018, PSB.

[31]  Philipp M. Altrock,et al.  The mathematics of cancer: integrating quantitative models , 2015, Nature Reviews Cancer.

[32]  Ken Chen,et al.  Monovar: single nucleotide variant detection in single cells , 2016, Nature Methods.

[33]  James T. Webber,et al.  Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris , 2018, Nature.

[34]  Kim-Anh Lê Cao,et al.  mixOmics: An R package for ‘omics feature selection and multiple data integration , 2017, bioRxiv.

[35]  Siddharth S. Dey,et al.  Integrated genome and transcriptome sequencing from the same cell , 2014, Nature Biotechnology.

[36]  Charlotte Soneson,et al.  A systematic performance evaluation of clustering methods for single-cell RNA-seq data , 2018, F1000Research.

[37]  H. Irshad,et al.  Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A Review—Current Status and Future Potential , 2014, IEEE Reviews in Biomedical Engineering.

[38]  J. Marchini,et al.  Unified single-cell analysis of testis gene regulation and pathology in five mouse strains , 2019, eLife.

[39]  Andrew Menzies,et al.  Architectures of somatic genomic rearrangement in human cancer amplicons at sequence-level resolution. , 2007, Genome research.

[40]  Guo-Cheng Yuan,et al.  Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH+ , 2019, Nature.

[41]  Myles Brown,et al.  A Bayesian model for single cell transcript expression analysis on MERFISH data , 2018, Bioinform..

[42]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[43]  Vladimir Potapov,et al.  Examining Sources of Error in PCR by Single-Molecule Sequencing , 2017, PloS one.

[44]  Trieu My Van,et al.  A user's perspective on GeoMxTM digital spatial profiling , 2019, Immuno-oncology technology.

[45]  Lihua Zhang,et al.  Comparison of Computational Methods for Imputing Single-Cell RNA-Sequencing Data , 2020, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[46]  Philippe Lambin,et al.  Quantitative radiomics studies for tissue characterization: a review of technology and methodological procedures , 2017, The British journal of radiology.

[47]  R. Nielsen,et al.  Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level. , 2005, Molecular biology and evolution.

[48]  W. Koh,et al.  Single-cell genome sequencing: current state of the science , 2016, Nature Reviews Genetics.

[49]  M. Junttila,et al.  Influence of tumour micro-environment heterogeneity on therapeutic response , 2013, Nature.

[50]  Bettina Budeus,et al.  TruePrime is a novel method for whole-genome amplification from single cells based on TthPrimPol , 2016, Nature Communications.

[51]  Pavel Skums,et al.  Inference of clonal selection in cancer populations using single-cell sequencing data , 2018, bioRxiv.

[52]  Dongmei Ai,et al.  SVEngine: an efficient and versatile simulator of genome structural variations with features of cancer clonal evolution , 2018, bioRxiv.

[53]  Garry P Nolan,et al.  Visualization and cellular hierarchy inference of single-cell data using SPADE , 2016, Nature Protocols.

[54]  B. Redelings,et al.  Erasing errors due to alignment ambiguity when estimating positive selection. , 2014, Molecular biology and evolution.

[55]  Sheng Liu,et al.  Decomposing Cell Identity for Transfer Learning across Cellular Measurements, Platforms, Tissues, and Species. , 2019, Cell systems.

[56]  M. Jacobsen Point Process Theory and Applications: Marked Point and Piecewise Deterministic Processes , 2005 .

[57]  P. Linsley,et al.  MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data , 2015, Genome Biology.

[58]  Fabian J Theis,et al.  Diffusion pseudotime robustly reconstructs lineage branching , 2016, Nature Methods.

[59]  B. Shuch,et al.  Analysis of mutation, selection, and epistasis: an informed approach to cancer clinical trials , 2018, Oncotarget.

[60]  J. Marioni,et al.  Pooling across cells to normalize single-cell RNA sequencing data with many zero counts , 2016, Genome Biology.

[61]  Mariusz Rzetala,et al.  Anthropogenic enrichment of the chemical composition of bottom sediments of water bodies in the neighborhood of a non-ferrous metal smelter (Silesian Upland, Southern Poland) , 2019, Scientific Reports.

[62]  S. Teichmann,et al.  Exponential scaling of single-cell RNA-seq in the past decade , 2017, Nature Protocols.

[63]  Sean C. Bendall,et al.  Multiplexed ion beam imaging of human breast tumors , 2014, Nature Medicine.

[64]  David Tse,et al.  Valid Post-clustering Differential Analysis for Single-Cell RNA-Seq. , 2018, Cell systems.

[65]  Alexey M. Kozlov,et al.  RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference , 2018, bioRxiv.

[66]  O. Stegle,et al.  Modeling Cell-Cell Interactions from Spatial Molecular Data with Spatial Variance Component Analysis , 2018, bioRxiv.

[67]  M. Robinson,et al.  A systematic performance evaluation of clustering methods for single-cell RNA-seq data. , 2018, F1000Research.

[68]  Patrik L. Ståhl,et al.  Visualization and analysis of gene expression in tissue sections by spatial transcriptomics , 2016, Science.

[69]  Martin J. Aryee,et al.  Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation , 2018, Cell.

[70]  L. Van Haute,et al.  Optimization and evaluation of single‐cell whole‐genome multiple displacement amplification , 2006, Human mutation.

[71]  Nathan Salomonis,et al.  cellHarmony: Cell-level matching and comparison of single-cell transcriptomes , 2018, bioRxiv.

[72]  Andrew C. Adey,et al.  Sequencing thousands of single-cell genomes with combinatorial indexing , 2017, Nature Methods.

[73]  Michael C. Schatz,et al.  Interactive analysis and assessment of single-cell copy-number variations , 2015, Nature Methods.

[74]  Cole Trapnell,et al.  The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells , 2014, Nature Biotechnology.

[75]  Scott V Edwards,et al.  Estimating phylogenetic trees from genome‐scale data , 2015, Annals of the New York Academy of Sciences.

[76]  Dmitry Korkin,et al.  A Hybrid Deep Clustering Approach for Robust Cell Type Profiling Using Single-cell RNA-seq Data , 2019, bioRxiv.

[77]  J. Buhmann,et al.  Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry , 2014, Nature Methods.

[78]  Sijia Lu,et al.  Uniform and accurate single-cell sequencing based on emulsion whole-genome amplification , 2015, Proceedings of the National Academy of Sciences.

[79]  E. Szczurek,et al.  Epistasis in genomic and survival data of cancer patients , 2017, bioRxiv.

[80]  Alexandros Stamatakis,et al.  Short Tree, Long Tree, Right Tree, Wrong Tree: New Acquisition Bias Corrections for Inferring SNP Phylogenies , 2015, Systematic biology.

[81]  Kevin R. Moon,et al.  Exploring single-cell data with deep multitasking neural networks , 2017, Nature Methods.

[82]  Olivier Gascuel,et al.  Modeling protein evolution with several amino acid replacement matrices depending on site rates. , 2012, Molecular biology and evolution.

[83]  Andrew Evans,et al.  Digital imaging in pathology: whole-slide imaging and beyond. , 2013, Annual review of pathology.

[84]  Nicholas Pervolarakis,et al.  Tumour heterogeneity and metastasis at single-cell resolution , 2018, Nature Cell Biology.

[85]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..

[86]  Martin A. Nowak,et al.  A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity , 2015, Nature.

[87]  Allon M. Klein,et al.  Single-cell mapping of gene expression landscapes and lineage in the zebrafish embryo , 2018, Science.

[88]  Angshul Majumdar,et al.  AutoImpute: Autoencoder based imputation of single-cell RNA-seq data , 2018, Scientific Reports.

[89]  I. Nikaido,et al.  CellFishing.jl: an ultrafast and scalable cell search method for single-cell RNA sequencing , 2019, Genome Biology.

[90]  Holden T Maecker,et al.  Algorithmic Tools for Mining High-Dimensional Cytometry Data , 2015, The Journal of Immunology.

[91]  Eyal David,et al.  Spatial reconstruction of immune niches by combining photoactivatable reporters and scRNA-seq , 2017, Science.

[92]  Do-Hyun Nam,et al.  Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells , 2015, Genome Biology.

[93]  Principal Investigators,et al.  Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris , 2018 .

[94]  Travis S. Johnson,et al.  BERMUDA: a novel deep transfer learning method for single-cell RNA sequencing batch correction reveals hidden high-resolution cellular subtypes , 2019, Genome Biology.

[95]  Jingshu Wang,et al.  Data denoising with transfer learning in single-cell transcriptomics , 2019, Nature Methods.

[96]  Nir Ailon,et al.  Deep Metric Learning Using Triplet Network , 2014, SIMBAD.

[97]  Andrew C. Adey,et al.  Single-Cell Transcriptional Profiling of a Multicellular Organism , 2017 .

[98]  Omri Wurtzel,et al.  Cell type transcriptome atlas for the planarian Schmidtea mediterranea , 2018, Science.

[99]  Angus M. Sidore,et al.  Enhanced sequencing coverage with digital droplet multiple displacement amplification , 2015, Nucleic acids research.

[100]  Eirini Arvaniti,et al.  Sensitive detection of rare disease-associated cell subsets via representation learning , 2016, Nature Communications.

[101]  Anne Condon,et al.  Interpretable dimensionality reduction of single cell transcriptome data with deep generative models , 2017, Nature Communications.

[102]  Oleksii Kozlov,et al.  Models, Optimizations, and Tools for Large-Scale Phylogenetic Inference, Handling Sequence Uncertainty, and Taxonomic Validation , 2018 .

[103]  Robert Tibshirani,et al.  A General Framework for Estimation and Inference From Clusters of Features , 2015, 1511.07839.

[104]  Shuigeng Zhou,et al.  Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM , 2019, Nature Communications.

[105]  Kieran R. Campbell,et al.  Uncovering pseudotemporal trajectories with covariates from single cell and bulk expression data , 2018, Nature Communications.

[106]  M. Vermeulen,et al.  Single-Cell DNA Methylation Profiling: Technologies and Biological Applications. , 2018, Trends in biotechnology.

[107]  Fabian J Theis,et al.  Cell type atlas and lineage tree of a whole complex animal by single-cell transcriptomics , 2018, Science.

[108]  J. Marioni,et al.  Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data , 2016, bioRxiv.

[109]  Ken Chen,et al.  SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models , 2017, Genome Biology.

[110]  Frank Reinecke,et al.  Exploring DNA quality of single cells for genome analysis with simultaneous whole-genome amplification , 2018, Scientific Reports.

[111]  Salil S. Bhate,et al.  Deep Profiling of Mouse Splenic Architecture with CODEX Multiplexed Imaging , 2017, Cell.

[112]  Ziheng Yang,et al.  The effect of insertions, deletions, and alignment errors on the branch-site test of positive selection. , 2010, Molecular biology and evolution.

[113]  Paul Hoffman,et al.  Integrating single-cell transcriptomic data across different conditions, technologies, and species , 2018, Nature Biotechnology.

[114]  Jeffrey R Moffitt,et al.  High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing , 2016, Proceedings of the National Academy of Sciences.

[115]  Mark D. Robinson,et al.  diffcyt: Differential discovery in high-dimensional cytometry via high-resolution clustering , 2018, Communications Biology.

[116]  Feng Jin,et al.  Recent advances in single cell manipulation and biochemical analysis on microfluidics. , 2019, The Analyst.

[117]  C. Iacobuzio-Donahue,et al.  Computational Modeling of Pancreatic Cancer Reveals Kinetics of Metastasis Suggesting Optimum Treatment Strategies , 2012, Cell.

[118]  Jay W. Shin,et al.  The Human Cell Atlas: Technical approaches and challenges , 2017, Briefings in functional genomics.

[119]  Evan Z. Macosko,et al.  Molecular Diversity and Specializations among the Cells of the Adult Mouse Brain , 2018, Cell.

[120]  Wei Vivian Li,et al.  An accurate and robust imputation method scImpute for single-cell RNA-seq data , 2018, Nature Communications.

[121]  Ting Wang,et al.  Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing , 2015, GigaScience.

[122]  Hannah A. Pliner,et al.  The cis-regulatory dynamics of embryonic development at single cell resolution , 2017, Nature.

[123]  N. Batada,et al.  Mapping transcriptionally equivalent populations across single cell RNA-seq datasets , 2018, bioRxiv.

[124]  Yi-Ping Phoebe Chen,et al.  A database of simulated tumor genomes towards accurate detection of somatic small variants in cancer , 2018, bioRxiv.

[125]  Debarka Sengupta,et al.  Fast, scalable and accurate differential expression analysis for single cells , 2016, bioRxiv.

[126]  E. Pierson,et al.  ZIFA: Dimensionality reduction for zero-inflated single-cell gene expression analysis , 2015, Genome Biology.

[127]  Samuel Demharter,et al.  Wiring together large single-cell RNA-seq sample collections , 2018, bioRxiv.

[128]  David Posada,et al.  Comparison of single-cell whole-genome amplification strategies , 2018, bioRxiv.

[129]  Hannah A. Pliner,et al.  Reversed graph embedding resolves complex single-cell trajectories , 2017, Nature Methods.

[130]  David M. Simcha,et al.  Tackling the widespread and critical impact of batch effects in high-throughput data , 2010, Nature Reviews Genetics.

[131]  Lars E. Borm,et al.  Spatial organization of the somatosensory cortex revealed by osmFISH , 2018, Nature Methods.

[132]  Xun Zhu,et al.  Using single nucleotide variations in single-cell RNA-seq to identify subpopulations and genotype-phenotype linkage , 2016, Nature Communications.

[133]  Mohammed El-Kebir,et al.  SPhyR: tumor phylogeny estimation from single-cell sequencing data under loss and error , 2018, Bioinform..

[134]  Mark D. Robinson,et al.  Towards unified quality verification of synthetic count data with countsimQC , 2017, Bioinform..

[135]  Kim-Anh Lê Cao,et al.  DIABLO - an integrative, multi-omics, multivariate method for multi-group classification , 2017 .

[136]  N. Carter,et al.  Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. , 1992, Genomics.

[137]  Ron Shamir,et al.  Genome Rearrangement Problems with Single and Multiple Gene Copies: A Review , 2019, Bioinformatics and Phylogenetics.

[138]  Angelika Amon,et al.  Chromosome Mis-segregation Generates Cell-Cycle-Arrested Cells with Complex Karyotypes that Are Eliminated by the Immune System. , 2017, Developmental cell.

[139]  X. Xie,et al.  Single-cell whole-genome analyses by Linear Amplification via Transposon Insertion (LIANTI) , 2017, Science.

[140]  Nimrod D. Rubinstein,et al.  Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region , 2018, Science.

[141]  Laleh Haghverdi,et al.  Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors , 2018, Nature Biotechnology.

[142]  Martin A. Nowak,et al.  Quantifying Clonal and Subclonal Passenger Mutations in Cancer Evolution , 2016, PLoS Comput. Biol..

[143]  Peter J Park,et al.  Linking transcriptional and genetic tumor heterogeneity through allele analysis of single-cell RNA-seq data , 2018, Genome research.

[144]  Philip Lijnzaad,et al.  CHETAH: a selective, hierarchical cell type identification method for single-cell RNA sequencing , 2019, bioRxiv.

[145]  Rafael A. Irizarry,et al.  Feature selection and dimension reduction for single-cell RNA-Seq based on a multinomial model , 2019, Genome Biology.

[146]  R. Hubert,et al.  Whole genome amplification from a single cell: implications for genetic analysis. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[147]  Rhonda Bacher,et al.  Design and computational analysis of single-cell RNA-sequencing experiments , 2016, Genome Biology.

[148]  P. Rigollet,et al.  Reconstruction of developmental landscapes by optimal-transport analysis of single-cell gene expression sheds light on cellular reprogramming , 2017, bioRxiv.

[149]  N. McGovern,et al.  Unsupervised High-Dimensional Analysis Aligns Dendritic Cells across Tissues and Species , 2016, Immunity.

[150]  Andrew C. Adey,et al.  Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing , 2015, Science.

[151]  David A. Knowles,et al.  Batch effects and the effective design of single-cell gene expression studies , 2016, Scientific Reports.

[152]  Mark D. Robinson,et al.  Comparison of Clustering Methods for High-Dimensional Single-Cell Flow and Mass Cytometry Data , 2016, bioRxiv.

[153]  Bernd Bodenmiller,et al.  miCAT: A toolbox for analysis of cell phenotypes and interactions in multiplex image cytometry data , 2017, Nature Methods.

[154]  Alexander Zelikovsky,et al.  CliqueSNV: An Efficient Noise Reduction Technique for Accurate Assembly of ViralVariants from NGS Data , 2020 .

[155]  Nir Yosef,et al.  SymSim: simulating multi-faceted variability in single cell RNA sequencing , 2018, bioRxiv.

[156]  Sarah A. Teichmann,et al.  Cardelino: Integrating whole exomes and single-cell transcriptomes to reveal phenotypic impact of somatic variants , 2018, bioRxiv.

[157]  Steven J. M. Jones,et al.  Mutational Analysis Reveals the Origin and Therapy-Driven Evolution of Recurrent Glioma , 2014, Science.

[158]  Lars E. Borm,et al.  Molecular Architecture of the Mouse Nervous System , 2018, Cell.

[159]  John R. Garbe,et al.  A multitask clustering approach for single-cell RNA-seq analysis in Recessive Dystrophic Epidermolysis Bullosa , 2018, PLoS Comput. Biol..

[160]  B. Rannala,et al.  Efficient Bayesian Species Tree Inference under the Multispecies Coalescent , 2015, Systematic biology.

[161]  A. van Oudenaarden,et al.  Single-Cell Transcriptomics Meets Lineage Tracing. , 2018, Cell stem cell.

[162]  Sidra Nawaz,et al.  Mapping spatial heterogeneity in the tumor microenvironment: a new era for digital pathology , 2015, Laboratory Investigation.

[163]  Andrew C. Adey,et al.  Sequencing thousands of single-cell genomes with combinatorial indexing , 2017 .

[164]  A. Regev,et al.  Scaling single-cell genomics from phenomenology to mechanism , 2017, Nature.

[165]  R. Houlston,et al.  Whole-Genome Amplification by Improved Primer Extension Preamplification PCR (I-PEP-PCR). , 2008, CSH protocols.

[166]  Luyi Tian,et al.  Comparison of clustering tools in R for medium-sized 10x Genomics single-cell RNA-sequencing data , 2018, F1000Research.

[167]  David van Dijk,et al.  Manifold learning-based methods for analyzing single-cell RNA-sequencing data , 2018 .

[168]  R. Satija,et al.  Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression , 2019, Genome Biology.

[169]  Alexey M. Kozlov,et al.  RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference , 2019, Bioinform..

[170]  Elena Rivas,et al.  Probabilistic Phylogenetic Inference with Insertions and Deletions , 2008, PLoS Comput. Biol..

[171]  Roland Eils,et al.  The Human Cell Atlas , 2017, bioRxiv.

[172]  Mark D. Johnson,et al.  Functional genomic analysis of chromosomal aberrations in a compendium of 8000 cancer genomes , 2013, Genome research.

[173]  A. Oshlack,et al.  Splatter: simulation of single-cell RNA sequencing data , 2017, Genome Biology.

[174]  Arne Traulsen,et al.  Cancer initiation with epistatic interactions between driver and passenger mutations. , 2013, Journal of theoretical biology.

[175]  Casper Kaae Sønderby,et al.  scVAE: variational auto-encoders for single-cell gene expression data , 2020, Bioinform..

[176]  Luyi Tian,et al.  Comparison of clustering tools in R for medium-sized 10x Genomics single-cell RNA-sequencing data , 2018, F1000Research.

[177]  Nicholas Navin,et al.  Tumor evolution: Linear, branching, neutral or punctuated? , 2017, Biochimica et biophysica acta. Reviews on cancer.

[178]  A. Oudenaarden,et al.  Validation of noise models for single-cell transcriptomics , 2014, Nature Methods.

[179]  Caleb Weinreb,et al.  Fundamental limits on dynamic inference from single-cell snapshots , 2017, Proceedings of the National Academy of Sciences.

[180]  Charles Swanton,et al.  Metastasis as an evolutionary process , 2016, Science.

[181]  Carina Strell,et al.  Placing RNA in context and space – methods for spatially resolved transcriptomics , 2019, The FEBS journal.

[182]  Martin A. Nowak,et al.  Genetic Progression and the Waiting Time to Cancer , 2007, PLoS Comput. Biol..

[183]  Daisuke Komura,et al.  Machine Learning Methods for Histopathological Image Analysis , 2017, Computational and structural biotechnology journal.

[184]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[185]  Kerstin B. Meyer,et al.  Fast Batch Alignment of Single Cell Transcriptomes Unifies Multiple Mouse Cell Atlases into an Integrated Landscape , 2018, bioRxiv.

[186]  Alexander J. Hartemink,et al.  MATCHER: manifold alignment reveals correspondence between single cell transcriptome and epigenome dynamics , 2017, Genome Biology.

[187]  Yvan Saeys,et al.  A comparison of single-cell trajectory inference methods , 2019, Nature Biotechnology.

[188]  C. Ponting,et al.  Single-Cell Multiomics: Multiple Measurements from Single Cells , 2017, Trends in genetics : TIG.

[189]  J. Troge,et al.  Tumour evolution inferred by single-cell sequencing , 2011, Nature.

[190]  Rickard Sandberg,et al.  Identification of spatial expression trends in single-cell gene expression data , 2018, Nature Methods.

[191]  Luyi Tian,et al.  Benchmarking single cell RNA-sequencing analysis pipelines using mixture control experiments , 2019, Nature Methods.

[192]  Chun Jimmie Ye,et al.  Multiplexed droplet single-cell RNA-sequencing using natural genetic variation , 2017, Nature Biotechnology.

[193]  O. Stegle,et al.  DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning , 2016, Genome Biology.

[194]  R. Tibshirani,et al.  Automated identification of stratifying signatures in cellular subpopulations , 2014, Proceedings of the National Academy of Sciences.

[195]  Tallulah S Andrews,et al.  False signals induced by single-cell imputation , 2018, F1000Research.

[196]  Xiang Zhou,et al.  Accuracy, robustness and scalability of dimensionality reduction methods for single-cell RNA-seq analysis , 2019, Genome Biology.

[197]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[198]  Kieran R. Campbell,et al.  clonealign: statistical integration of independent single-cell RNA and DNA sequencing data from human cancers , 2019, Genome Biology.

[199]  M. Reinders,et al.  A comparison of automatic cell identification methods for single-cell RNA sequencing data , 2019, Genome Biology.

[200]  Florian Wagner,et al.  K-nearest neighbor smoothing for high-throughput single-cell RNA-Seq data , 2017, bioRxiv.

[201]  Stephen R Quake,et al.  Single-cell multimodal profiling reveals cellular epigenetic heterogeneity , 2016, Nature Methods.

[202]  F. Michor,et al.  Stochastic dynamics of cancer initiation , 2011, Physical biology.

[203]  Lior Rokach,et al.  CaSTLe – Classification of single cells by transfer learning: Harnessing the power of publicly available single cell RNA sequencing experiments to annotate new experiments , 2018, PloS one.

[204]  Ambrose J. Carr,et al.  Bayesian Inference for Single-cell Clustering and Imputing , 2017 .

[205]  J. C. Love,et al.  EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing. , 2014, Cancer discovery.

[206]  K. Sermon,et al.  Whole-genome multiple displacement amplification from single cells , 2006, Nature Protocols.

[207]  Charles Gawad,et al.  A Quantitative Comparison of Single-Cell Whole Genome Amplification Methods , 2014, PloS one.

[208]  Howard Y. Chang,et al.  Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.

[209]  Ziheng Yang Maximum likelihood phylogenetic estimation from DNA sequences with variable rates over sites: Approximate methods , 1994, Journal of Molecular Evolution.

[210]  Carolina Wählby,et al.  In situ sequencing for RNA analysis in preserved tissue and cells , 2013, Nature Methods.

[211]  Elena K. Kandror,et al.  Single-cell topological RNA-Seq analysis reveals insights into cellular differentiation and development , 2017, Nature Biotechnology.

[212]  H. Ohtsuki,et al.  Accumulation of driver and passenger mutations during tumor progression , 2009, Proceedings of the National Academy of Sciences.

[213]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[214]  Nancy R. Zhang,et al.  SAVER: Gene expression recovery for single-cell RNA sequencing , 2018, Nature Methods.

[215]  Brian L Browning,et al.  Genotype Imputation from Large Reference Panels. , 2018, Annual review of genomics and human genetics.

[216]  Fabio Luciani,et al.  Impact of sequencing depth and read length on single cell RNA sequencing data of T cells , 2017, Scientific Reports.

[217]  Philipp Thomas,et al.  bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data , 2018, bioRxiv.

[218]  J. Junker,et al.  Simultaneous lineage tracing and cell-type identification using CRISPR/Cas9-induced genetic scars , 2018, Nature Biotechnology.

[219]  C. Swanton Intratumor heterogeneity: evolution through space and time. , 2012, Cancer research.

[220]  Yann LeCun,et al.  Signature Verification Using A "Siamese" Time Delay Neural Network , 1993, Int. J. Pattern Recognit. Artif. Intell..

[221]  A. Madabhushi,et al.  Spatial Architecture and Arrangement of Tumor-Infiltrating Lymphocytes for Predicting Likelihood of Recurrence in Early-Stage Non–Small Cell Lung Cancer , 2018, Clinical Cancer Research.

[222]  Bengt Sennblad,et al.  Conbase: a software for unsupervised discovery of clonal somatic mutations in single cells through read phasing , 2018, Genome Biology.

[223]  Tao Wang,et al.  Accurate identification of single nucleotide variants in whole genome amplified single cells , 2017, Nature Methods.

[224]  Yinyin Yuan Spatial Heterogeneity in the Tumor Microenvironment. , 2016, Cold Spring Harbor perspectives in medicine.

[225]  Yu Wang,et al.  Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues , 2019, Nature Biotechnology.

[226]  Sashwati Roy,et al.  Laser capture microdissection: Big data from small samples. , 2015, Histology and histopathology.

[227]  Michael J. T. Stubbington,et al.  Single-cell transcriptomics to explore the immune system in health and disease , 2017, Science.

[228]  Xiang Zhou,et al.  VIPER: variability-preserving imputation for accurate gene expression recovery in single-cell RNA sequencing studies , 2018, Genome Biology.

[229]  M. Gut,et al.  bigSCale: an analytical framework for big-scale single-cell data. , 2018, Genome research.

[230]  Rebecca R. Gray,et al.  Measuring the temporal structure in serially sampled phylogenies , 2011, Methods in ecology and evolution.

[231]  Altuna Akalin,et al.  netSmooth: Network-smoothing based imputation for single cell RNA-seq , 2017, bioRxiv.

[232]  J. Plotkin,et al.  The Population Genetics of dN/dS , 2008, PLoS genetics.

[233]  Ole Winther,et al.  Deconvolution of autoencoders to learn biological regulatory modules from single cell mRNA sequencing data , 2019, BMC Bioinformatics.

[234]  Andrew C. Adey,et al.  Joint profiling of chromatin accessibility and gene expression in thousands of single cells , 2018, Science.

[235]  Roberto Semeraro,et al.  Xome-Blender: A novel cancer genome simulator , 2018, PloS one.

[236]  M. Speicher,et al.  Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[237]  P. Brooks,et al.  Impact of the non‐cellular tumor microenvironment on metastasis: Potential therapeutic and imaging opportunities , 2007, Journal of cellular physiology.

[238]  Alexis Boukouvalas,et al.  GrandPrix: scaling up the Bayesian GPLVM for single-cell data , 2017, bioRxiv.

[239]  Kieran R. Campbell,et al.  Order Under Uncertainty: Robust Differential Expression Analysis Using Probabilistic Models for Pseudotime Inference , 2016, bioRxiv.

[240]  Minseok Kwon,et al.  Linked-read analysis identifies mutations in single-cell DNA-sequencing data , 2019, Nature Genetics.

[241]  Franck Picard,et al.  Probabilistic count matrix factorization for single cell expression data analysis , 2019, Bioinform..

[242]  Alexander van Oudenaarden,et al.  Spatially resolved transcriptomics and beyond , 2014, Nature Reviews Genetics.

[243]  S. Teichmann,et al.  Computational and analytical challenges in single-cell transcriptomics , 2015, Nature Reviews Genetics.

[244]  Nikolaus Rajewsky,et al.  The Drosophila embryo at single-cell transcriptome resolution , 2017, Science.

[245]  Sébastien Roch,et al.  A short proof that phylogenetic tree reconstruction by maximum likelihood is hard , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[246]  Lana S. Martin,et al.  Systematic benchmarking of omics computational tools , 2019, Nature Communications.

[247]  William E. Allen,et al.  Three-dimensional intact-tissue sequencing of single-cell transcriptional states , 2018, Science.

[248]  Stéphanie Bougeard,et al.  MINT: a multivariate integrative method to identify reproducible molecular signatures across independent experiments and platforms , 2016, BMC Bioinformatics.

[249]  A. Graybeal,et al.  Is it better to add taxa or characters to a difficult phylogenetic problem? , 1998, Systematic biology.

[250]  Joel s. Brown,et al.  Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer , 2017, Nature Communications.

[251]  Barbara E. Engelhardt,et al.  A robust nonlinear low-dimensional manifold for single cell RNA-seq data , 2018, BMC Bioinformatics.

[252]  Florian Wagner,et al.  Moana: A robust and scalable cell type classification framework for single-cell RNA-Seq data , 2018, bioRxiv.

[253]  Erik Sundström,et al.  RNA velocity of single cells , 2018, Nature.

[254]  C. Maley,et al.  Spatial structure increases the waiting time for cancer , 2011, New journal of physics.

[255]  M. Nowak,et al.  Dynamics of cancer progression , 2004, Nature Reviews Cancer.

[256]  Souvik Ghosh,et al.  Global labor flow network reveals the hierarchical organization and dynamics of geo-industrial clusters , 2019, Nature Communications.

[257]  Gerald Quon,et al.  scAlign: a tool for alignment, integration, and rare cell identification from scRNA-seq data , 2018, Genome Biology.

[258]  Allon M. Klein,et al.  The dynamics of gene expression in vertebrate embryogenesis at single-cell resolution , 2018, Science.

[259]  C Garmendia,et al.  Highly efficient DNA synthesis by the phage phi 29 DNA polymerase , 1989 .

[260]  Raphael Gottardo,et al.  Orchestrating single-cell analysis with Bioconductor , 2019, Nature Methods.

[261]  Charlotte Soneson,et al.  Bias, robustness and scalability in single-cell differential expression analysis , 2018, Nature Methods.

[262]  Florian Markowetz,et al.  OncoNEM: inferring tumor evolution from single-cell sequencing data , 2016, Genome Biology.

[263]  L. Cai,et al.  In Situ Transcription Profiling of Single Cells Reveals Spatial Organization of Cells in the Mouse Hippocampus , 2016, Neuron.

[264]  Mary E. Edgerton,et al.  Multiclonal Invasion in Breast Tumors Identified by Topographic Single Cell Sequencing , 2018, Cell.

[265]  John C. Marioni,et al.  Testing for differential abundance in mass cytometry data , 2017, Nature Methods.

[266]  Bryan D. Kolaczkowski,et al.  A mixed branch length model of heterotachy improves phylogenetic accuracy. , 2008, Molecular biology and evolution.

[267]  S. Dudoit,et al.  A general and flexible method for signal extraction from single-cell RNA-seq data , 2018, Nature Communications.

[268]  A. Madabhushi,et al.  Histopathological Image Analysis: A Review , 2009, IEEE Reviews in Biomedical Engineering.

[269]  Jack Kuipers,et al.  Single-cell mutation identification via phylogenetic inference , 2018, Nature Communications.

[270]  Lorenz Wernisch,et al.  Pseudotime estimation: deconfounding single cell time series , 2015, bioRxiv.

[271]  P. Lin,et al.  Mechanisms that drive inflammatory tumor microenvironment, tumor heterogeneity, and metastatic progression. , 2017, Seminars in cancer biology.

[272]  C. Ponting,et al.  Parallel single-cell sequencing links transcriptional and epigenetic heterogeneity , 2015, Nature Methods.

[273]  Julian Gough,et al.  DGEclust: differential expression analysis of clustered count data , 2014, Genome Biology.

[274]  S. Kingsmore,et al.  Comprehensive human genome amplification using multiple displacement amplification , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[275]  Andreas Beyer,et al.  Regulatory network-based imputation of dropouts in single-cell RNA sequencing data , 2019, bioRxiv.

[276]  Pardis C Sabeti,et al.  Identifying gene expression programs of cell-type identity and cellular activity with single-cell RNA-Seq , 2018, bioRxiv.

[277]  Samuel Aparicio,et al.  Scalable whole-genome single-cell library preparation without preamplification , 2017, Nature Methods.

[278]  Vibhor Kumar,et al.  CellAtlasSearch: a scalable search engine for single cells , 2018, Nucleic Acids Res..

[279]  Z. Bar-Joseph,et al.  Using neural networks for reducing the dimensions of single-cell RNA-Seq data , 2017, Nucleic acids research.

[280]  Marc J. Williams,et al.  Identification of neutral tumor evolution across cancer types , 2016, Nature Genetics.

[281]  R. Irizarry,et al.  Missing data and technical variability in single‐cell RNA‐sequencing experiments , 2018, Biostatistics.

[282]  Malgorzata Nowicka,et al.  CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. , 2019, F1000Research.

[283]  Xiaohui Wang,et al.  New library construction method for single-cell genomes , 2017, PloS one.

[284]  Helena L. Crowell,et al.  On the discovery of subpopulation-specific state transitions from multi-sample multi-condition single-cell RNA sequencing data , 2019, bioRxiv.

[285]  Hector Roux de Bézieux,et al.  Trajectory-based differential expression analysis for single-cell sequencing data , 2019, Nature Communications.

[286]  Malgorzata Nowicka,et al.  CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. , 2017, F1000Research.

[287]  Hongkai Ji,et al.  TSCAN: Pseudo-time reconstruction and evaluation in single-cell RNA-seq analysis , 2016, Nucleic acids research.

[288]  Davis J. McCarthy,et al.  f-scLVM: scalable and versatile factor analysis for single-cell RNA-seq , 2017, Genome Biology.

[289]  Florian Rohart,et al.  DIABLO: from multi-omics assays to biomarker discovery, an integrative approach , 2018, bioRxiv.

[290]  Andrew J. Hill,et al.  The single cell transcriptional landscape of mammalian organogenesis , 2019, Nature.

[291]  Rui Li,et al.  Imputation of single-cell gene expression with an autoencoder neural network , 2018, bioRxiv.

[292]  Derrick J. Zwickl,et al.  Increased taxon sampling is advantageous for phylogenetic inference. , 2002, Systematic biology.

[293]  Myles Brown,et al.  A Bayesian model for single cell transcript expression analysis on MERFISH data , 2018, Bioinform..

[294]  Evan Z. Macosko,et al.  Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution , 2019, Science.

[295]  Itai Yanai,et al.  Accurate denoising of single-cell RNA-Seq data using unbiased principal component analysis , 2019, bioRxiv.

[296]  Richard A. Muscat,et al.  Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding , 2018, Science.

[297]  Alice Carolyn McHardy,et al.  Allele dynamics plots for the study of evolutionary dynamics in viral populations , 2010, Nucleic Acids Res..

[298]  Joshua W. K. Ho,et al.  CIDR: Ultrafast and accurate clustering through imputation for single-cell RNA-seq data , 2016, Genome Biology.

[299]  Alexandre Bouchard-Côté,et al.  Clonal genotype and population structure inference from single-cell tumor sequencing , 2016, Nature Methods.

[300]  Xin Gao,et al.  ClusterMap: Comparing analyses across multiple Single Cell RNA-Seq profiles , 2018, bioRxiv.

[301]  Y. Saeys,et al.  Computational flow cytometry: helping to make sense of high-dimensional immunology data , 2016, Nature Reviews Immunology.

[302]  Florian Wagner,et al.  ENHANCE: Accurate denoising of single-cell RNA-Seq data , 2019 .

[303]  Lovelace J Luquette,et al.  Identification of somatic mutations in single cell DNA-seq using a spatial model of allelic imbalance , 2019, Nature Communications.

[304]  Fabian J Theis,et al.  PAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cells , 2019, Genome Biology.

[305]  J. Marioni,et al.  Multi‐Omics Factor Analysis—a framework for unsupervised integration of multi‐omics data sets , 2018, Molecular systems biology.

[306]  J. Unnikrishnan,et al.  On characterizing protein spatial clusters with correlation approaches , 2016, Scientific Reports.

[307]  X. Zhuang,et al.  Spatially resolved, highly multiplexed RNA profiling in single cells , 2015, Science.

[308]  G. Sanguinetti,et al.  scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells , 2018, Nature Communications.

[309]  Christoph Hafemeister,et al.  Comprehensive integration of single cell data , 2018, bioRxiv.

[310]  Alexandros Stamatakis,et al.  ExaBayes: Massively Parallel Bayesian Tree Inference for the Whole-Genome Era , 2014, Molecular biology and evolution.

[311]  Y. Kluger,et al.  Zero-preserving imputation of scRNA-seq data using low-rank approximation , 2018, bioRxiv.

[312]  Iain C Macaulay,et al.  Separation and parallel sequencing of the genomes and transcriptomes of single cells using G&T–seq , 2016, Nature Protocols.

[313]  S. Granick,et al.  Giant capsids from lattice self-assembly of cyclodextrin complexes , 2017, Nature Communications.

[314]  Marmar Moussa,et al.  Locality Sensitive Imputation for Single Cell RNA-Seq Data , 2019, J. Comput. Biol..

[315]  A. Regev,et al.  Single-cell reconstruction of developmental trajectories during zebrafish embryogenesis , 2018, Science.

[316]  Xuegong Zhang,et al.  scRecover: Discriminating true and false zeros in single-cell RNA-seq data for imputation , 2019, bioRxiv.

[317]  Kieran R. Campbell,et al.  Probabilistic cell type assignment of single-cell transcriptomic data reveals spatiotemporal microenvironment dynamics in human cancers , 2019, bioRxiv.

[318]  James D. Brenton,et al.  Phylogenetic Quantification of Intra-tumour Heterogeneity , 2013, PLoS Comput. Biol..

[319]  Kun Zhang,et al.  Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues , 2015, Nature Protocols.

[320]  Kathryn Roeder,et al.  A United Statistical Framework for Single Cell and Bulk Sequencing Data , 2016, bioRxiv.

[321]  S. Orkin,et al.  Mapping the Mouse Cell Atlas by Microwell-Seq , 2018, Cell.

[322]  Ken Chen,et al.  SiCloneFit: Bayesian inference of population structure, genotype, and phylogeny of tumor clones from single-cell genome sequencing data , 2018, Genome Research.

[323]  Gordon B. Mills,et al.  High multiplex, digital spatial profiling of proteins and RNA in fixed tissue using genomic detection methods , 2019, bioRxiv.

[324]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[325]  Hong Yan,et al.  EnImpute: imputing dropout events in single-cell RNA-sequencing data via ensemble learning , 2019, Bioinform..

[326]  Sijia Lu,et al.  Single-Cell Whole-Genome Amplification and Sequencing: Methodology and Applications. , 2015, Annual review of genomics and human genetics.

[327]  Sean C. Bendall,et al.  Wishbone identifies bifurcating developmental trajectories from single-cell data , 2016, Nature Biotechnology.

[328]  Yvan Saeys,et al.  Essential guidelines for computational method benchmarking , 2018, Genome Biology.

[329]  Victor Guryev,et al.  Single-cell sequencing reveals karyotype heterogeneity in murine and human malignancies , 2016, Genome Biology.

[330]  Marek Kimmel,et al.  Branching processes in biology , 2002 .

[331]  R. Peng,et al.  Elements and Principles of Data Analysis , 2019, 1903.07639.

[332]  Ewa Szczurek,et al.  ARA: accurate, reliable and active histopathological image classification framework with Bayesian deep learning , 2019, Scientific Reports.

[333]  Sergei L. Kosakovsky Pond,et al.  UC Office of the President Recent Work Title Less Is More : An Adaptive Branch-Site Random Effects Model for Efficient Detection of Episodic Diversifying Selection Permalink , 2015 .

[334]  Ewa Szczurek,et al.  ARA: accurate, reliable and active histopathological image classification framework with Bayesian deep learning , 2019, Scientific Reports.

[335]  Timur Zhiyentayev,et al.  Single-cell in situ RNA profiling by sequential hybridization , 2014, Nature Methods.

[336]  Martin Vingron,et al.  Synthetic sickness or lethality points at candidate combination therapy targets in glioblastoma , 2013, International journal of cancer.

[337]  Colin A Russell,et al.  Predicting evolution from the shape of genealogical trees , 2014, eLife.

[338]  Ian Holmes,et al.  Solving the master equation for Indels , 2017, BMC Bioinformatics.

[339]  Aviv Regev,et al.  BROCKMAN: deciphering variance in epigenomic regulators by k-mer factorization , 2018, BMC Bioinformatics.

[340]  Jack Kuipers,et al.  Single-cell sequencing data reveal widespread recurrence and loss of mutational hits in the life histories of tumors , 2017, Genome research.

[341]  M. Hemberg,et al.  scmap: projection of single-cell RNA-seq data across data sets , 2018, Nature Methods.

[342]  Michael I. Jordan,et al.  Deep Generative Modeling for Single-cell Transcriptomics , 2018, Nature Methods.

[343]  Lin Wei,et al.  Cell BLAST: Searching large-scale scRNA-seq databases via unbiased cell embedding , 2019, bioRxiv.

[344]  L. Pelkmans,et al.  Control of Transcript Variability in Single Mammalian Cells , 2015, Cell.

[345]  Dong Sun,et al.  Microfluidic Single-Cell Manipulation and Analysis: Methods and Applications , 2019, Micromachines.

[346]  Boudewijn P. F. Lelieveldt,et al.  CyteGuide: Visual Guidance for Hierarchical Single-Cell Analysis , 2018, IEEE Transactions on Visualization and Computer Graphics.

[347]  Fabian J Theis,et al.  Single-cell RNA-seq denoising using a deep count autoencoder , 2019, Nature Communications.

[348]  David van Dijk,et al.  Exploring single-cell data with deep multitasking neural networks , 2019, Nature Methods.

[349]  Qionghai Dai,et al.  Scalable analysis of cell-type composition from single-cell transcriptomics using deep recurrent learning , 2019, Nature Methods.

[350]  Christopher S. Hughes,et al.  Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes , 2016, Molecular & Cellular Proteomics.

[351]  Carlo Colantuoni,et al.  Decomposing cell identity for transfer learning across cellular measurements, platforms, tissues, and species , 2018, bioRxiv.

[352]  Jens Lagergren,et al.  Scuphr: A probabilistic framework for cell lineage tree reconstruction , 2018, bioRxiv.

[353]  David Blei,et al.  The Markov link method: a nonparametric approach to combine observations from multiple experiments , 2018, bioRxiv.

[354]  Benjamin J. Raphael,et al.  Haplotype phasing in single-cell DNA-sequencing data , 2018, Bioinform..

[355]  Fabian J. Theis,et al.  The Human Lung Cell Atlas - A high-resolution reference map of the human lung in health and disease. , 2019, American journal of respiratory cell and molecular biology.

[356]  Masahito Hosokawa,et al.  Massively parallel whole genome amplification for single-cell sequencing using droplet microfluidics , 2017, Scientific Reports.

[357]  Kevin R. Moon,et al.  Recovering Gene Interactions from Single-Cell Data Using Data Diffusion , 2018, Cell.

[358]  S. Teichmann,et al.  SpatialDE: identification of spatially variable genes , 2018, Nature Methods.

[359]  Allon M. Klein,et al.  Single-cell barcoding and sequencing using droplet microfluidics , 2016, Nature Protocols.

[360]  Shawn M. Gillespie,et al.  Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma , 2014, Science.

[361]  Catalina A. Vallejos,et al.  BASiCS: Bayesian Analysis of Single-Cell Sequencing Data , 2015, PLoS Comput. Biol..

[362]  Benjamin J. Raphael,et al.  The Copy-Number Tree Mixture Deconvolution Problem and Applications to Multi-sample Bulk Sequencing Tumor Data , 2017, RECOMB.

[363]  Keegan D. Korthauer,et al.  A statistical approach for identifying differential distributions in single-cell RNA-seq experiments , 2016, Genome Biology.

[364]  E. Tartour,et al.  Immune infiltration in human cancer: prognostic significance and disease control. , 2011, Current topics in microbiology and immunology.

[365]  Christoph Ziegenhain,et al.  A systematic evaluation of single cell RNA-seq analysis pipelines , 2019, Nature Communications.

[366]  Richard A. Moore,et al.  Resource: Scalable whole genome sequencing of 40,000 single cells identifies stochastic aneuploidies, genome replication states and clonal repertoires , 2018, bioRxiv.

[367]  Sandro Santagata,et al.  Highly multiplexed immunofluorescence imaging of human tissues and tumors using t-CyCIF and conventional optical microscopes , 2018 .

[368]  Evan Z. Macosko,et al.  Integrative inference of brain cell similarities and differences from single-cell genomics , 2018, bioRxiv.

[369]  Penghang Yin,et al.  SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data , 2019, Genome Biology.

[370]  Jin Gu,et al.  VASC: Dimension Reduction and Visualization of Single-cell RNA-seq Data by Deep Variational Autoencoder , 2018, Genom. Proteom. Bioinform..

[371]  D T Severson,et al.  BEARscc determines robustness of single-cell clusters using simulated technical replicates , 2017, Nature Communications.