Machine learning can predict setting behavior and strength evolution of hydrating cement systems

[1]  Sunday O. Olatunji,et al.  Performance Comparison of SVM and ANN in Predicting Compressive Strength of Concrete , 2014 .

[2]  Mohammad Hossein Fazel Zarandi,et al.  Fuzzy polynomial neural networks for approximation of the compressive strength of concrete , 2008, Appl. Soft Comput..

[3]  Luís Torgo,et al.  Resampling strategies for regression , 2015, Expert Syst. J. Knowl. Eng..

[4]  Bartosz Krawczyk,et al.  Learning from imbalanced data: open challenges and future directions , 2016, Progress in Artificial Intelligence.

[5]  John G. Hagedorn,et al.  Discovery in Hydrating Plaster Using Machine Learning Methods , 2002, Discovery Science.

[6]  J. O. Irwin,et al.  ON A CRITERION FOR THE REJECTION OF OUTLYING OBSERVATIONS , 1925 .

[7]  Jeffrey W. Bullard,et al.  Characterization and Modeling of Pores and Surfaces in Cement Paste , 2008 .

[8]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[9]  Umit Atici,et al.  Prediction of the strength of mineral admixture concrete using multivariable regression analysis and an artificial neural network , 2011, Expert Syst. Appl..

[10]  J. Bullard,et al.  Mechanisms of cement hydration , 2011 .

[11]  I-Cheng Yeh,et al.  Modeling of strength of high-performance concrete using artificial neural networks , 1998 .

[12]  İlker Bekir Topçu,et al.  Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic , 2008 .

[13]  Nemkumar Banthia,et al.  Cements in the 21st Century: Challenges, Perspectives, and Opportunities. , 2017, Journal of the American Ceramic Society. American Ceramic Society.

[14]  Thomas M. Cover,et al.  Estimation by the nearest neighbor rule , 1968, IEEE Trans. Inf. Theory.

[15]  Pierre Geurts,et al.  Extremely randomized trees , 2006, Machine Learning.

[16]  Hong-Guang Ni,et al.  Prediction of compressive strength of concrete by neural networks , 2000 .

[17]  Jeffrey W. Bullard,et al.  Modeling and simulation of cement hydration kinetics and microstructure development , 2011 .

[18]  Hojjat Adeli,et al.  Supervised Deep Restricted Boltzmann Machine for Estimation of Concrete , 2017 .

[19]  Ashutosh Kumar Singh,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2010 .

[20]  Jiwen Dong,et al.  Time-series forecasting using flexible neural tree model , 2005, Inf. Sci..

[21]  Artur Dubrawski,et al.  HPC Strength Prediction Using Artificial Neural Network , 1995 .

[22]  Jun Chang,et al.  Modeling early-age hydration kinetics of Portland cement using flexible neural tree , 2010, Neural Computing and Applications.

[23]  M. A. Bhatti,et al.  Predicting the compressive strength and slump of high strength concrete using neural network , 2006 .

[24]  Puneet Gupta,et al.  Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from statistical analysis and machine learning methods , 2019, Cement and Concrete Research.

[25]  Jui-Sheng Chou,et al.  Optimizing the Prediction Accuracy of Concrete Compressive Strength Based on a Comparison of Data-Mining Techniques , 2011, J. Comput. Civ. Eng..