Melvin magnetic fluxtube/cosmology correspondence

We explore a correspondence between Melvin magnetic fluxtubes and anisotropic cosmological solutions, which we call ‘Melvin cosmologies’. The correspondence via analytic continuation provides useful information in both directions. Solution generating techniques known on the fluxtube side can also be used for generating cosmological backgrounds. Melvin cosmologies interpolate between different limiting Kasner behaviors at early and late times. This has an analogue on the fluxtube side between limiting Levi-Civita behavior at small and large radii. We construct generalized Melvin fluxtubes and cosmologies in both Einstein–Maxwell theory and dilaton gravity and show that similar properties hold.

[1]  W. Sabra Phantom metrics with Killing spinors , 2015, 1507.04597.

[2]  D. Kastor,et al.  Magnetic fields in an expanding universe , 2013, 1312.4923.

[3]  M. Sheikh-Jabbari,et al.  Gauge fields and inflation , 2012, 1212.2921.

[4]  D. Çiftci,et al.  Higher dimensional cylindrical or Kasner type electrovacuum solutions , 2012, 1205.5336.

[5]  Kostas Skenderis,et al.  Pseudo-Supersymetry and the Domain-Wall/Cosmology Correspondence , 2006 .

[6]  Kostas Skenderis,et al.  Hamilton-Jacobi method for Curved Domain Walls and Cosmologies , 2006, hep-th/0609056.

[7]  Kostas Skenderis,et al.  Hidden supersymmetry of domain walls and cosmologies. , 2006, Physical review letters.

[8]  A. Baykal,et al.  Cylindrically Symmetric-Static Brans-Dicke-Maxwell Solutions , 2005, gr-qc/0512143.

[9]  A. Strominger,et al.  Fluxbranes in String Theory , 2001, hep-th/0104136.

[10]  A. Y. Miguelote,et al.  Levi-Civita solutions coupled with electromagnetic fields , 2001, gr-qc/0104018.

[11]  C. Hofman,et al.  Deformations of topological open strings , 2000, hep-th/0006120.

[12]  Gibbons,et al.  Decay of magnetic fields in Kaluza-Klein theory. , 1995, Physical review. D, Particles and fields.

[13]  Dowker,et al.  Pair creation of dilaton black holes. , 1993, Physical review. D, Particles and fields.

[14]  Keiichi Maeda,et al.  Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields , 1988 .

[15]  G. Gibbons,et al.  Spacetime as a membrane in higher dimensions , 2001, hep-th/0109093.

[16]  D. Wiltshire,et al.  Global properties of Kaluza-Klein cosmologies. , 1987, Physical review. D, Particles and fields.

[17]  R. Wald Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant , 1983 .

[18]  F. J. Ernst Black holes in a magnetic universe , 1976 .

[19]  V. Belinskiǐ,et al.  EFFECT OF SCALAR AND VECTOR FIELDS ON THE NATURE OF THE COSMOLOGICAL SINGULARITY. , 1972 .

[20]  V. Belinskiǐ,et al.  Oscillatory approach to a singular point in the relativistic cosmology , 1970 .

[21]  B. Harrison,et al.  New Solutions of the Einstein-Maxwell Equations from Old , 1968 .

[22]  G. Rosen Spatially Homogeneous Solutions to the Einstein-Maxwell Equations , 1964 .

[23]  M. A. Melvin Pure magnetic and electric geons , 1964 .

[24]  G. Rosen Symmetries of the Einstein‐Maxwell Equations , 1962 .

[25]  E. Kasner Geometrical theorems on Einstein's cosmological equations , 1921 .