Melvin magnetic fluxtube/cosmology correspondence
暂无分享,去创建一个
[1] W. Sabra. Phantom metrics with Killing spinors , 2015, 1507.04597.
[2] D. Kastor,et al. Magnetic fields in an expanding universe , 2013, 1312.4923.
[3] M. Sheikh-Jabbari,et al. Gauge fields and inflation , 2012, 1212.2921.
[4] D. Çiftci,et al. Higher dimensional cylindrical or Kasner type electrovacuum solutions , 2012, 1205.5336.
[5] Kostas Skenderis,et al. Pseudo-Supersymetry and the Domain-Wall/Cosmology Correspondence , 2006 .
[6] Kostas Skenderis,et al. Hamilton-Jacobi method for Curved Domain Walls and Cosmologies , 2006, hep-th/0609056.
[7] Kostas Skenderis,et al. Hidden supersymmetry of domain walls and cosmologies. , 2006, Physical review letters.
[8] A. Baykal,et al. Cylindrically Symmetric-Static Brans-Dicke-Maxwell Solutions , 2005, gr-qc/0512143.
[9] A. Strominger,et al. Fluxbranes in String Theory , 2001, hep-th/0104136.
[10] A. Y. Miguelote,et al. Levi-Civita solutions coupled with electromagnetic fields , 2001, gr-qc/0104018.
[11] C. Hofman,et al. Deformations of topological open strings , 2000, hep-th/0006120.
[12] Gibbons,et al. Decay of magnetic fields in Kaluza-Klein theory. , 1995, Physical review. D, Particles and fields.
[13] Dowker,et al. Pair creation of dilaton black holes. , 1993, Physical review. D, Particles and fields.
[14] Keiichi Maeda,et al. Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields , 1988 .
[15] G. Gibbons,et al. Spacetime as a membrane in higher dimensions , 2001, hep-th/0109093.
[16] D. Wiltshire,et al. Global properties of Kaluza-Klein cosmologies. , 1987, Physical review. D, Particles and fields.
[17] R. Wald. Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant , 1983 .
[18] F. J. Ernst. Black holes in a magnetic universe , 1976 .
[19] V. Belinskiǐ,et al. EFFECT OF SCALAR AND VECTOR FIELDS ON THE NATURE OF THE COSMOLOGICAL SINGULARITY. , 1972 .
[20] V. Belinskiǐ,et al. Oscillatory approach to a singular point in the relativistic cosmology , 1970 .
[21] B. Harrison,et al. New Solutions of the Einstein-Maxwell Equations from Old , 1968 .
[22] G. Rosen. Spatially Homogeneous Solutions to the Einstein-Maxwell Equations , 1964 .
[23] M. A. Melvin. Pure magnetic and electric geons , 1964 .
[24] G. Rosen. Symmetries of the Einstein‐Maxwell Equations , 1962 .
[25] E. Kasner. Geometrical theorems on Einstein's cosmological equations , 1921 .