Online learning of quantum states

Suppose we have many copies of an unknown $n$-qubit state $\rho$. We measure some copies of $\rho$ using a known two-outcome measurement $E_{1}$, then other copies using a measurement $E_{2}$, and so on. At each stage $t$, we generate a current hypothesis $\sigma_{t}$ about the state $\rho$, using the outcomes of the previous measurements. We show that it is possible to do this in a way that guarantees that $|\operatorname{Tr}(E_{i} \sigma_{t}) - \operatorname{Tr}(E_{i}\rho) |$, the error in our prediction for the next measurement, is at least $\varepsilon$ at most $\operatorname{O}\!\left(n / \varepsilon^2 \right) $ times. Even in the "non-realizable" setting---where there could be arbitrary noise in the measurement outcomes---we show how to output hypothesis states that do significantly worse than the best possible states at most $\operatorname{O}\!\left(\sqrt {Tn}\right) $ times on the first $T$ measurements. These results generalize a 2007 theorem by Aaronson on the PAC-learnability of quantum states, to the online and regret-minimization settings. We give three different ways to prove our results---using convex optimization, quantum postselection, and sequential fat-shattering dimension---which have different advantages in terms of parameters and portability.

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  Ashwin Nayak,et al.  Optimal lower bounds for quantum automata and random access codes , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[3]  Andris Ambainis,et al.  Dense quantum coding and quantum finite automata , 2002, JACM.

[4]  Scott Aaronson,et al.  Limitations of quantum advice and one-way communication , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[5]  Gunnar Rätsch,et al.  Matrix Exponentiated Gradient Updates for On-line Learning and Bregman Projection , 2004, J. Mach. Learn. Res..

[6]  Scott Aaronson,et al.  QMA/qpoly Is Contained In PSPACE/poly: De-Merlinizing Quantum Protocols , 2005, Electron. Colloquium Comput. Complex..

[7]  K. Audenaert,et al.  Continuity bounds on the quantum relative entropy , 2005, quant-ph/0503218.

[8]  K. Audenaert,et al.  Continuity bounds on the quantum relative entropy -- II , 2005, 1105.2656.

[9]  S. Aaronson,et al.  QMA/qpoly /spl sube/ PSPACE/poly: de-Merlinizing quantum protocols , 2006, 21st Annual IEEE Conference on Computational Complexity (CCC'06).

[10]  Scott Aaronson,et al.  The learnability of quantum states , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  Manfred K. Warmuth,et al.  Bayesian generalized probability calculus for density matrices , 2009, Machine Learning.

[12]  Sanjeev Arora,et al.  The Multiplicative Weights Update Method: a Meta-Algorithm and Applications , 2012, Theory Comput..

[13]  Mark M. Wilde,et al.  Sequential decoding of a general classical-quantum channel , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[14]  Scott Aaronson,et al.  A Full Characterization of Quantum Advice , 2014, SIAM J. Comput..

[15]  E. Lieb,et al.  Remainder terms for some quantum entropy inequalities , 2014, 1402.3840.

[16]  Jingliang Gao Quantum union bounds for sequential projective measurements , 2014, 1410.5688.

[17]  Ambuj Tewari,et al.  Online learning via sequential complexities , 2010, J. Mach. Learn. Res..

[18]  Ryan O'Donnell,et al.  Efficient quantum tomography , 2015, STOC.

[19]  Scott Aaronson,et al.  The Complexity of Quantum States and Transformations: From Quantum Money to Black Holes , 2016, Electron. Colloquium Comput. Complex..

[20]  Sanjeev Arora,et al.  A Combinatorial, Primal-Dual Approach to Semidefinite Programs , 2016 .

[21]  Elad Hazan,et al.  Introduction to Online Convex Optimization , 2016, Found. Trends Optim..

[22]  Xiaodi Wu,et al.  Sample-Optimal Tomography of Quantum States , 2015, IEEE Transactions on Information Theory.

[23]  Scott Aaronson,et al.  Shadow tomography of quantum states , 2017, Electron. Colloquium Comput. Complex..

[24]  John Watrous,et al.  The Theory of Quantum Information , 2018 .

[25]  Andrea Rocchetto,et al.  Stabiliser states are efficiently PAC-learnable , 2017, Quantum Inf. Comput..

[26]  Ryan O'Donnell,et al.  Quantum state certification , 2017, STOC.

[27]  Simone Severini,et al.  Experimental learning of quantum states , 2017, Science Advances.

[28]  Tsuyoshi Murata,et al.  {m , 1934, ACML.