An Introduction to Many-Valued and Fuzzy Logic: Semantics, Algebras, and Derivation Systems
暂无分享,去创建一个
[1] Petr Hájek,et al. Basic fuzzy logic and BL-algebras II , 1998, Soft Comput..
[2] Petr Hájek,et al. Rational Pavelka predicate logic is a conservative extension of Łukasiewicz predicate logic , 2000, Journal of Symbolic Logic.
[3] Gary M. Hardegree,et al. Algebraic Methods in Philosophical Logic , 2001 .
[4] F. J. Pelletier,et al. Some notes concerning fuzzy logics , 1977 .
[5] K. Menger. Statistical Metrics. , 1942, Proceedings of the National Academy of Sciences of the United States of America.
[6] I. Turksen. Measurement of membership functions and their acquisition , 1991 .
[7] J. Goguen. L-fuzzy sets , 1967 .
[8] E. Trillas,et al. in Fuzzy Logic , 2002 .
[9] P. Hájek. Fuzzy logic and arithmetical hierarchy , 1995 .
[10] Dominic Hyde,et al. From heaps and gaps to heaps of gluts , 1997 .
[11] C. Chang,et al. Algebraic analysis of many valued logics , 1958 .
[12] S. Gottwald. A Treatise on Many-Valued Logics , 2001 .
[13] Satoko Titani,et al. Intuitionistic fuzzy logic and intuitionistic fuzzy set theory , 1984, Journal of Symbolic Logic.
[14] Peter F. Smith,et al. Vagueness: A Reader , 1999 .
[15] R. Mesiar,et al. Logical, algebraic, analytic, and probabilistic aspects of triangular norms , 2005 .
[16] J. Rosser,et al. Fragments of many-valued statement calculi , 1958 .
[17] Witold A. Pogorzelski. The deduction theorem for Łukasiewicz many-valued propositional calculi , 1964 .
[18] Vilém Novák,et al. Antonyms and linguistic quantifiers in fuzzy logic , 2001, Fuzzy Sets Syst..
[19] Petr Hájek,et al. Residuated fuzzy logics with an involutive negation , 2000, Arch. Math. Log..
[20] R. P. Dilworth,et al. Residuated Lattices. , 1938, Proceedings of the National Academy of Sciences of the United States of America.
[21] Richard C. T. Lee,et al. Some Properties of Fuzzy Logic , 1971, Inf. Control..
[22] Merrie Bergmann,et al. The Logic Book , 1980 .
[23] J. A. Goguen,et al. The logic of inexact concepts , 1969, Synthese.
[24] Witold Pedrycz,et al. Handbook of fuzzy computation , 1998 .
[25] Robert McNaughton,et al. A Theorem About Infinite-Valued Sentential Logic , 1951, J. Symb. Log..
[26] Alonzo Church,et al. A note on the Entscheidungsproblem , 1936, Journal of Symbolic Logic.
[27] Jc Beall,et al. Possibilities and Paradox: An Introduction to Modal and Many-Valued Logic , 2003 .
[28] J. A. Robinson,et al. A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.
[29] D. Mundici,et al. Algebraic Foundations of Many-Valued Reasoning , 1999 .
[30] Petr Hájek,et al. On very true , 2001, Fuzzy Sets Syst..
[31] B. V. Fraassen. Singular Terms, Truth-Value Gaps, and Free Logic , 1966 .
[32] G. Priest. An introduction to non-classical logic , 2001 .
[33] William I. Grosky,et al. SOFSEM 2002: Theory and Practice of Informatics , 2002, Lecture Notes in Computer Science.
[34] Gottlob Frege,et al. Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens , 1879 .
[35] Jan Pavelka,et al. On Fuzzy Logic I Many-valued rules of inference , 1979, Math. Log. Q..
[36] Crispin Wright. Further Reflections on the Sorites Paradox , 1987 .
[37] V. Novák,et al. Mathematical Principles of Fuzzy Logic , 1999 .
[38] Robert John Ackermann,et al. An Introduction to Many-Valued Logics , 2019 .
[39] Willard Van Orman Quine,et al. Word and Object , 1960 .
[40] John T. Kearns. The Strong Completeness of a System for Kleene's Three-Valued Logic , 1979, Math. Log. Q..
[41] C. C. Chang. Proof of an axiom of Łukasiewicz , 1958 .
[42] Mark Colyvan,et al. Heaps of Gluts and Hyde‐ing the Sorites , 2001 .
[43] Jan Łukasiewicz,et al. Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls (micro) , 1930 .
[44] K. Fine. Vagueness, truth and logic , 1975, Synthese.
[45] Petr Hájek. Fuzzy Logic and Arithmetical Hierarchy III , 2001, Stud Logica.
[46] N. Rescher. Many Valued Logic , 1969 .
[47] Stefano Aguzzoli,et al. Finiteness in Infinite-Valued Łukasiewicz Logic , 2000, J. Log. Lang. Inf..
[48] Jan Krajícek,et al. Embedding Logics into Product Logic , 1998, Stud Logica.
[49] W. Pedrycz,et al. An introduction to fuzzy sets : analysis and design , 1998 .
[50] Lotfi A. Zadeh,et al. Fuzzy Sets , 1996, Inf. Control..
[51] Kaoru Hirota,et al. Industrial Applications of Fuzzy Technology , 1993, Springer Japan.
[52] L. A. Zadeh,et al. Fuzzy logic and approximate reasoning , 1975, Synthese.
[53] Franco Montagna,et al. The $L\Pi$ and $L\Pi\frac{1}{2}$ logics: two complete fuzzy systems joining Łukasiewicz and Product Logics , 2001, Arch. Math. Log..
[54] George J. Klir,et al. Fuzzy sets and fuzzy logic - theory and applications , 1995 .
[55] C. A. Meredith. The dependence of an axiom of Łukasiewicz , 1958 .
[56] Robert L. Martin. Recent essays on truth and the liar paradox , 1984 .
[57] Alfred Tarski,et al. Der Wahrheitsbegriff in den formalisierten Sprachen , 1935 .
[58] Kenton F. Machina,et al. Truth, belief, and vagueness , 1976, J. Philos. Log..
[59] Geoffrey Hunter,et al. Metalogic: An Introduction to the Metatheory of Standard First Order Logic , 1971 .
[60] Vilém Novák. On the syntactico-semantical completeness of first-order fuzzy logic. I. Syntax and semantics , 1990, Kybernetika.
[61] David C. Rine,et al. Proceedings of the sixth international symposium on Multiple-valued logic , 1976 .
[62] Hugues Leblanc,et al. A strong completeness theorem for 3-valued logic. II , 1974, Notre Dame J. Formal Log..
[63] Robert Roth Stoll,et al. Set theory and logic , 1963 .
[64] Stephen Cole Kleene,et al. On notation for ordinal numbers , 1938, Journal of Symbolic Logic.
[65] Richard G. Heck. A Note on the Logic of (Higher-Order) Vagueness , 1993 .
[66] Susan Haack,et al. Do we need “fuzzy logic”? , 1979 .
[67] Bruno Scarpellini. Die Nichtaxiomatisierbarkeit des Unendlichwertigen Pradikatenkalkuls von Lukasiewicz , 1962, J. Symb. Log..
[68] Howard DeLong,et al. A Profile of Mathematical Logic , 2004 .
[69] C. Chang,et al. A new proof of the completeness of the Łukasiewicz axioms , 1959 .
[70] R. Smullyan. First-Order Logic , 1968 .
[71] Petr Hájek,et al. Metamathematics of Fuzzy Logic , 1998, Trends in Logic.
[72] M. Black. Vagueness. An Exercise in Logical Analysis , 1937, Philosophy of Science.