An Introduction to Many-Valued and Fuzzy Logic: Semantics, Algebras, and Derivation Systems

Preface 1. Introduction 2. Review of classical propositional logic 3. Review of classical first-order logic 4. Alternative semantics for truth-values and truth-functions 5. Three-valued propositional logics: semantics 6. Derivation systems for three-valued propositional logic 7. Three-valued first-order logics: semantics 8. Derivation systems for three-valued first-order logics 9. Alternative semantics for three-valued systems 10. The principle of charity reconsidered and a new problem of the fringe 11. Fuzzy propositional logics: semantics 12. Fuzzy algebras 13. Derivational systems for fuzzy propositional logics 14. Fuzzy first-order logics: semantics 15. Derivation systems for fuzzy first-order logics 16. Extensions of fuzziness 17. Fuzzy membership functions.

[1]  Petr Hájek,et al.  Basic fuzzy logic and BL-algebras II , 1998, Soft Comput..

[2]  Petr Hájek,et al.  Rational Pavelka predicate logic is a conservative extension of Łukasiewicz predicate logic , 2000, Journal of Symbolic Logic.

[3]  Gary M. Hardegree,et al.  Algebraic Methods in Philosophical Logic , 2001 .

[4]  F. J. Pelletier,et al.  Some notes concerning fuzzy logics , 1977 .

[5]  K. Menger Statistical Metrics. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[6]  I. Turksen Measurement of membership functions and their acquisition , 1991 .

[7]  J. Goguen L-fuzzy sets , 1967 .

[8]  E. Trillas,et al.  in Fuzzy Logic , 2002 .

[9]  P. Hájek Fuzzy logic and arithmetical hierarchy , 1995 .

[10]  Dominic Hyde,et al.  From heaps and gaps to heaps of gluts , 1997 .

[11]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[12]  S. Gottwald A Treatise on Many-Valued Logics , 2001 .

[13]  Satoko Titani,et al.  Intuitionistic fuzzy logic and intuitionistic fuzzy set theory , 1984, Journal of Symbolic Logic.

[14]  Peter F. Smith,et al.  Vagueness: A Reader , 1999 .

[15]  R. Mesiar,et al.  Logical, algebraic, analytic, and probabilistic aspects of triangular norms , 2005 .

[16]  J. Rosser,et al.  Fragments of many-valued statement calculi , 1958 .

[17]  Witold A. Pogorzelski The deduction theorem for Łukasiewicz many-valued propositional calculi , 1964 .

[18]  Vilém Novák,et al.  Antonyms and linguistic quantifiers in fuzzy logic , 2001, Fuzzy Sets Syst..

[19]  Petr Hájek,et al.  Residuated fuzzy logics with an involutive negation , 2000, Arch. Math. Log..

[20]  R. P. Dilworth,et al.  Residuated Lattices. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Richard C. T. Lee,et al.  Some Properties of Fuzzy Logic , 1971, Inf. Control..

[22]  Merrie Bergmann,et al.  The Logic Book , 1980 .

[23]  J. A. Goguen,et al.  The logic of inexact concepts , 1969, Synthese.

[24]  Witold Pedrycz,et al.  Handbook of fuzzy computation , 1998 .

[25]  Robert McNaughton,et al.  A Theorem About Infinite-Valued Sentential Logic , 1951, J. Symb. Log..

[26]  Alonzo Church,et al.  A note on the Entscheidungsproblem , 1936, Journal of Symbolic Logic.

[27]  Jc Beall,et al.  Possibilities and Paradox: An Introduction to Modal and Many-Valued Logic , 2003 .

[28]  J. A. Robinson,et al.  A Machine-Oriented Logic Based on the Resolution Principle , 1965, JACM.

[29]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[30]  Petr Hájek,et al.  On very true , 2001, Fuzzy Sets Syst..

[31]  B. V. Fraassen Singular Terms, Truth-Value Gaps, and Free Logic , 1966 .

[32]  G. Priest An introduction to non-classical logic , 2001 .

[33]  William I. Grosky,et al.  SOFSEM 2002: Theory and Practice of Informatics , 2002, Lecture Notes in Computer Science.

[34]  Gottlob Frege,et al.  Begriffsschrift, eine der arithmetischen nachgebildete Formelsprache des reinen Denkens , 1879 .

[35]  Jan Pavelka,et al.  On Fuzzy Logic I Many-valued rules of inference , 1979, Math. Log. Q..

[36]  Crispin Wright Further Reflections on the Sorites Paradox , 1987 .

[37]  V. Novák,et al.  Mathematical Principles of Fuzzy Logic , 1999 .

[38]  Robert John Ackermann,et al.  An Introduction to Many-Valued Logics , 2019 .

[39]  Willard Van Orman Quine,et al.  Word and Object , 1960 .

[40]  John T. Kearns The Strong Completeness of a System for Kleene's Three-Valued Logic , 1979, Math. Log. Q..

[41]  C. C. Chang Proof of an axiom of Łukasiewicz , 1958 .

[42]  Mark Colyvan,et al.  Heaps of Gluts and Hyde‐ing the Sorites , 2001 .

[43]  Jan Łukasiewicz,et al.  Philosophische Bemerkungen zu mehrwertigen Systemen des Aussagenkalküls (micro) , 1930 .

[44]  K. Fine Vagueness, truth and logic , 1975, Synthese.

[45]  Petr Hájek Fuzzy Logic and Arithmetical Hierarchy III , 2001, Stud Logica.

[46]  N. Rescher Many Valued Logic , 1969 .

[47]  Stefano Aguzzoli,et al.  Finiteness in Infinite-Valued Łukasiewicz Logic , 2000, J. Log. Lang. Inf..

[48]  Jan Krajícek,et al.  Embedding Logics into Product Logic , 1998, Stud Logica.

[49]  W. Pedrycz,et al.  An introduction to fuzzy sets : analysis and design , 1998 .

[50]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[51]  Kaoru Hirota,et al.  Industrial Applications of Fuzzy Technology , 1993, Springer Japan.

[52]  L. A. Zadeh,et al.  Fuzzy logic and approximate reasoning , 1975, Synthese.

[53]  Franco Montagna,et al.  The $L\Pi$ and $L\Pi\frac{1}{2}$ logics: two complete fuzzy systems joining Łukasiewicz and Product Logics , 2001, Arch. Math. Log..

[54]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[55]  C. A. Meredith The dependence of an axiom of Łukasiewicz , 1958 .

[56]  Robert L. Martin Recent essays on truth and the liar paradox , 1984 .

[57]  Alfred Tarski,et al.  Der Wahrheitsbegriff in den formalisierten Sprachen , 1935 .

[58]  Kenton F. Machina,et al.  Truth, belief, and vagueness , 1976, J. Philos. Log..

[59]  Geoffrey Hunter,et al.  Metalogic: An Introduction to the Metatheory of Standard First Order Logic , 1971 .

[60]  Vilém Novák On the syntactico-semantical completeness of first-order fuzzy logic. I. Syntax and semantics , 1990, Kybernetika.

[61]  David C. Rine,et al.  Proceedings of the sixth international symposium on Multiple-valued logic , 1976 .

[62]  Hugues Leblanc,et al.  A strong completeness theorem for 3-valued logic. II , 1974, Notre Dame J. Formal Log..

[63]  Robert Roth Stoll,et al.  Set theory and logic , 1963 .

[64]  Stephen Cole Kleene,et al.  On notation for ordinal numbers , 1938, Journal of Symbolic Logic.

[65]  Richard G. Heck A Note on the Logic of (Higher-Order) Vagueness , 1993 .

[66]  Susan Haack,et al.  Do we need “fuzzy logic”? , 1979 .

[67]  Bruno Scarpellini Die Nichtaxiomatisierbarkeit des Unendlichwertigen Pradikatenkalkuls von Lukasiewicz , 1962, J. Symb. Log..

[68]  Howard DeLong,et al.  A Profile of Mathematical Logic , 2004 .

[69]  C. Chang,et al.  A new proof of the completeness of the Łukasiewicz axioms , 1959 .

[70]  R. Smullyan First-Order Logic , 1968 .

[71]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[72]  M. Black Vagueness. An Exercise in Logical Analysis , 1937, Philosophy of Science.