Period Decompositions for the Capacitated Lot Sizing Problem with Setup Times

We study the multi-item capacitated lot sizing problem with setup times. Based on two strong reformulations of the problem, we present a transformed reformulation and valid inequalities that speed up column generation and Lagrange relaxation. We demonstrate computationally how both ideas enhance the performance of our algorithm and show theoretically how they are related to dual space reduction techniques. We compare several solution methods and propose a new efficient hybrid scheme that combines column generation and Lagrange relaxation in a novel way. Computational experiments show that the proposed solution method for finding lower bounds is competitive with textbook approaches and state-of-the-art approaches found in the literature. Finally, we design a branch-and-price-based heuristic and report computational results. The heuristic scheme compares favorably or outperforms other approaches.

[1]  David Pisinger A minimal algorithm for the Multiple-choice Knapsack Problem , 1995 .

[2]  Alan S. Manne,et al.  Programming of Economic Lot Sizes , 1958 .

[3]  Hartmut Stadtler,et al.  Multilevel Lot Sizing with Setup Times and Multiple Constrained Resources: Internally Rolling Schedules with Lot-Sizing Windows , 2003, Oper. Res..

[4]  William W. Trigeiro,et al.  Capacitated lot sizing with setup times , 1989 .

[5]  Jacques Desrosiers,et al.  Selected Topics in Column Generation , 2002, Oper. Res..

[6]  Laurence A. Wolsey,et al.  Production Planning by Mixed Integer Programming , 2010 .

[7]  Horst Tempelmeier,et al.  Dynamic capacitated lot-sizing problems: a classification and review of solution approaches , 2010, OR Spectr..

[8]  Jacques Desrosiers,et al.  Dual-Optimal Inequalities for Stabilized Column Generation , 2003, Oper. Res..

[9]  Zeger Degraeve,et al.  Improved lower bounds for the capacitated lot sizing problem with setup times , 2004, Oper. Res. Lett..

[10]  Luk N. Van Wassenhove,et al.  Lagrangean relaxation based heuristics for lot sizing with setup times , 2009, Eur. J. Oper. Res..

[11]  Hanif D. Sherali,et al.  An Effective Deflected Subgradient Optimization Scheme for Implementing Column Generation for Large-Scale Airline Crew Scheduling Problems , 2008, INFORMS J. Comput..

[12]  H. Tempelmeier A column generation heuristic for dynamic capacitated lot sizing with random demand under a fill rate constraint , 2011 .

[13]  Zeger Degraeve,et al.  BIBLIOGRAPHIC DATA AND CLASSIFICATIONS , 2003 .

[14]  Laurence A. Wolsey,et al.  Production Planning by Mixed Integer Programming (Springer Series in Operations Research and Financial Engineering) , 2006 .

[15]  Pierre Hansen,et al.  Stabilized column generation , 1998, Discret. Math..

[16]  Laurence A. Wolsey,et al.  Strong Formulations for Multi-Item Capacitated Lot Sizing , 1984 .

[17]  Terry P. Harrison,et al.  Lot-Sizing with Start-Up Times , 1998 .

[18]  Dennis Huisman,et al.  Combining Column Generation and Lagrangian Relaxation , 2005 .

[19]  Francisco Barahona,et al.  The volume algorithm: producing primal solutions with a subgradient method , 2000, Math. Program..

[20]  Silvio A. de Araujo,et al.  Reformulation and a Lagrangian heuristic for lot sizing problem on parallel machines , 2014, Ann. Oper. Res..

[21]  Arthur M. Geoffrion,et al.  Lagrangian Relaxation for Integer Programming , 2010, 50 Years of Integer Programming.

[22]  Laurence A. Wolsey,et al.  bc -- prod: A Specialized Branch-and-Cut System for Lot-Sizing Problems , 2000 .

[23]  Di Yuan,et al.  A Lagrangian Heuristic Based Branch-and-Bound Approach for the Capacitated Network Design Problem , 2000, Oper. Res..

[24]  Hartmut Stadtler Collaborative Planning - Concepts, Framework and Challenges , 2006, OR.

[25]  Martin W. P. Savelsbergh,et al.  A generic view of Dantzig-Wolfe decomposition in mixed integer programming , 2006, Oper. Res. Lett..

[26]  J. Krarup,et al.  Plant location, Set Covering and Economic Lot Size: An 0 (mn)-Algorithm for Structured Problems , 1977 .

[27]  Haldun Süral,et al.  On alternative mixed integer programming formulations and LP-based heuristics for lot-sizing with setup times , 2006, J. Oper. Res. Soc..

[28]  Martin W. P. Savelsbergh,et al.  On the capacitated lot-sizing and continuous 0-1 knapsack polyhedra , 2000, Eur. J. Oper. Res..

[29]  José M. Valério de Carvalho,et al.  Comparing Dantzig–Wolfe decompositions and branch-and-price algorithms for the multi-item capacitated lot sizing problem , 2010, Optim. Methods Softw..

[30]  Laurence A. Wolsey,et al.  Uncapacitated Lot-Sizing Problems with Start-Up Costs , 1989, Oper. Res..

[31]  T. Ibaraki,et al.  THE MULTIPLE-CHOICE KNAPSACK PROBLEM , 1978 .

[32]  Zeger Degraeve,et al.  Optimal Integer Solutions to Industrial Cutting-Stock Problems: Part 2, Benchmark Results , 2003, INFORMS J. Comput..

[33]  Zeger Degraeve,et al.  Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches , 2004, Eur. J. Oper. Res..

[34]  Marco Caserta,et al.  A cross entropy-Lagrangean hybrid algorithm for the multi-item capacitated lot-sizing problem with setup times , 2009, Comput. Oper. Res..

[35]  Francisco Barahona,et al.  Plant location with minimum inventory , 1998, Math. Program..

[36]  Arianna Alfieri,et al.  LP-based heuristics for the capacitated lot-sizing problem: The interaction of model formulation and solution algorithm , 2002 .

[37]  Stefan Helber,et al.  A Fix-and-Optimize Approach for the Multi-Level Capacitated Lot Sizing Problems , 2010 .

[38]  G. D. Eppen,et al.  Solving Multi-Item Capacitated Lot-Sizing Problems Using Variable Redefinition , 1987, Oper. Res..

[39]  Martin W. P. Savelsbergh,et al.  On the polyhedral structure of a multi–item production planning model with setup times , 2003, Math. Program..

[40]  Andrea Lodi,et al.  Approximation Algorithms for the Capacitated Multi-Item Lot-Sizing Problem via Flow-Cover Inequalities , 2008, Math. Oper. Res..

[41]  Hartmut Stadtler,et al.  Equivalence of the LP relaxations of two strong formulations for the capacitated lot-sizing problem with setup times , 2008, OR Spectr..

[42]  G. Nemhauser,et al.  Solving Multi-Item Capacitated Lot-Sizing Problems with Setup Times by Branch-and-Cut , 2000 .

[43]  Laurence A. Wolsey,et al.  Approximate extended formulations , 2006, Math. Program..

[44]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[45]  David Pisinger,et al.  A hybrid adaptive large neighborhood search heuristic for lot-sizing with setup times , 2012, Eur. J. Oper. Res..

[46]  Claude Le Pape,et al.  Exploring relaxation induced neighborhoods to improve MIP solutions , 2005, Math. Program..

[47]  Mathieu Van Vyve,et al.  A General Heuristic for Production Planning Problems , 2004, INFORMS J. Comput..

[48]  Matteo Fischetti,et al.  Local branching , 2003, Math. Program..