Horizons of modern molecular dynamics simulation in digitalized solid freeform fabrication with advanced materials

Abstract Our ability to shape and finish a component by combined methods of fabrication including (but not limited to) subtractive, additive, and/or no theoretical mass-loss/addition during the fabrication is now popularly known as solid freeform fabrication (SFF). Fabrication of a telescope mirror is a typical example where grinding and polishing processes are first applied to shape the mirror, and thereafter, an optical coating is usually applied to enhance its optical performance. The area of nanomanufacturing cannot grow without a deep knowledge of the fundamentals of materials and consequently, the use of computer simulations is now becoming ubiquitous. This article is intended to highlight the most recent advances in the computation benefit specific to the area of precision SFF as these systems are traversing through the journey of digitalization and Industry-4.0. Specifically, this article demonstrates that the application of the latest materials modelling approaches, based on techniques such as molecular dynamics, are enabling breakthroughs in applied precision manufacturing techniques.

[1]  J. Ritchie,et al.  Multiscale simulation of nanometric cutting of single crystal copper and its experimental validation , 2011 .

[2]  H. Urbassek,et al.  Atomistic Studies of Nanoindentation—A Review of Recent Advances , 2017 .

[3]  Robert Lewis Reuben,et al.  Diamond machining of silicon: A review of advances in molecular dynamics simulation , 2015 .

[4]  A. Rohl,et al.  Atomic force microscope adhesion measurements and atomistic molecular dynamics simulations at different humidities , 2017 .

[5]  S. R. Lee,et al.  Molecular dynamics studies of InGaN growth on nonpolar (11 2 \xAF0 ) GaN surfaces , 2018 .

[6]  H. Wadley,et al.  Atomistic simulations of the vapor deposition of Ni/Cu/Ni multilayers: The effects of adatom incident energy , 1998 .

[7]  G. Cross,et al.  Designing nanoindentation simulation studies by appropriate indenter choices: Case study on single crystal tungsten , 2018, Computational Materials Science.

[8]  Ted Belytschko,et al.  An adaptive concurrent multiscale method for the dynamic simulation of dislocations , 2011 .

[9]  Yuanqiang Tan,et al.  Discrete element method (DEM) modeling of fracture and damage in the machining process of polycrystalline SiC , 2009 .

[10]  Ryutaro Himeno,et al.  A 55 TFLOPS simulation of amyloid-forming peptides from yeast prion Sup35 with the special-purpose computer system MDGRAPE-3 , 2006, SC.

[11]  Pierre Kerfriden,et al.  Local/global model order reduction strategy for the simulation of quasi‐brittle fracture , 2011, 1108.3167.

[12]  R Fine,et al.  FASTRUN: A special purpose, hardwired computer for molecular simulation , 1991, Proteins.

[13]  Kornel Ehmann,et al.  The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science , 2004 .

[14]  P. Brault,et al.  Molecular Dynamics Simulations for Plasma‐Surface Interactions , 2017 .

[15]  Peter Gumbsch,et al.  Screened empirical bond-order potentials for Si-C , 2013, 1301.2142.

[16]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[17]  Michele Ciavarella,et al.  Modeling and simulation in tribology across scales: An overview , 2018, Tribology International.

[18]  H. Urbassek,et al.  Nanoindentation of hcp metals: a comparative simulation study of the evolution of dislocation networks , 2016, Nanotechnology.

[19]  Xiaowang Zhou,et al.  Stillinger-Weber potential for the II-VI elements Zn-Cd-Hg-S-Se-Te , 2013 .

[20]  Khaled Abou-El-Hossein,et al.  Review of molecular dynamics/experimental study of diamond-silicon behavior in nanoscale machining , 2018, The International Journal of Advanced Manufacturing Technology.

[21]  E. M. Wahba,et al.  A coupled FE and CFD approach to predict the cutting tool temperature profile in machining , 2014 .

[22]  Matthew A. Davies,et al.  Recent advances in modelling of metal machining processes , 2013 .

[23]  A. Petford-Long,et al.  Atomic scale structure of sputtered metal multilayers , 2001 .

[24]  H. Urbassek,et al.  Interplay of dislocation-based plasticity and phase transformation during Si nanoindentation , 2016 .

[25]  Saeed Zare Chavoshi,et al.  Molecular dynamics simulation of the elliptical vibration-assisted machining of pure iron , 2018 .

[26]  Nicholas Dunne,et al.  Twinning anisotropy of tantalum during nanoindentation , 2015 .

[27]  Suren A. Gevorgyan,et al.  Scalable, ambient atmosphere roll-to-roll manufacture of encapsulated large area, flexible organic tandem solar cell modules , 2014 .

[28]  G. Waters,et al.  Thin film processing by biased target ion beam deposition , 2000 .

[29]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[30]  D. Manolakos,et al.  Ablation study of laser micromachining process with molecular dynamics simulation , 2017 .

[31]  Alexander Stukowski,et al.  Atomistic investigation on the structure–property relationship during thermal spray nanoparticle impact , 2014 .

[32]  A. Stukowski,et al.  Comment on “Incipient plasticity of diamond during nanoindentation” by C. Xu, C. Liu and H. Wang, RSC Advances, 2017, 7, 36093 , 2018, RSC advances.

[33]  R. Balasubramaniam,et al.  Molecular dynamics study on the effect of discharge on adjacent craters on micro EDMed surface , 2018 .

[34]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[35]  Bryan M. Wong,et al.  Accuracy of existing atomic potentials for the CdTe semiconductor compound. , 2011, The Journal of chemical physics.

[36]  Patricia J. Teller,et al.  Proceedings of the 2008 ACM/IEEE conference on Supercomputing , 2008, HiPC 2008.

[37]  J. M. Longbottom,et al.  Cutting temperature measurement while machining – a review , 2005 .

[38]  Saeed Zare Chavoshi,et al.  Addressing the discrepancy of finding the equilibrium melting point of silicon using molecular dynamics simulations , 2017, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[39]  Makoto Taiji,et al.  MDGRAPE-4: a special-purpose computer system for molecular dynamics simulations , 2014, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[41]  R Komanduri,et al.  A review on the molecular dynamics simulation of machining at the atomic scale , 2001 .

[42]  Judith A. Harrison,et al.  Recent developments and simulations utilizing bond-order potentials , 2015 .

[43]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[44]  Vasily V. Bulatov,et al.  Probing the limits of metal plasticity with molecular dynamics simulations , 2017, Nature.

[45]  Paul Morantz,et al.  Current trends and future of sequential micro-machining processes on a single machine tool , 2017 .

[46]  Jacob Fish,et al.  Fatigue life prediction using 2‐scale temporal asymptotic homogenization , 2004 .

[47]  Khaled Abou-El-Hossein,et al.  Ultra-precision diamond turning of optical silicon—a review , 2018 .

[48]  Xichun Luo,et al.  Hybrid micro-machining processes: a review , 2015 .

[49]  Sergey G. Psakhie,et al.  Method of movable cellular automata as a tool for simulation within the framework of mesomechanics , 1995 .

[50]  M. Marinica,et al.  Assessment of interatomic potentials for atomistic analysis of static and dynamic properties of screw dislocations in W. , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[51]  P. Erhart,et al.  Atomicrex—a general purpose tool for the construction of atomic interaction models , 2017, 1701.08864.

[52]  Jim Glosli,et al.  Comments on P3M, FMM, and the Ewald method for large periodic Coulombic systems , 1996 .

[53]  Judith A. Harrison,et al.  Review of force fields and intermolecular potentials used in atomistic computational materials research , 2018, Applied Physics Reviews.

[54]  Nigel A. Marks,et al.  Graphitization of amorphous carbons: A comparative study of interatomic potentials , 2016 .

[55]  Feng Liu,et al.  An Accurate and Transferable Machine-Learning Interatomic Potential for Silicon , 2019 .

[56]  S. R. Lee,et al.  Molecular dynamics studies of defect formation during heteroepitaxial growth of InGaN alloys on (0001) GaN surfaces. , 2017, Journal of applied physics.

[57]  Judith A. Harrison,et al.  Reactive Bond-Order Potential for Si-, C-, and H-Containing Materials , 2013 .

[58]  E Tosatti,et al.  Peak effect versus skating in high-temperature nanofriction. , 2007, Nature materials.

[59]  Kevin T. Turner,et al.  Friction laws at the nanoscale , 2009, Nature.