Insect stereopsis demonstrated using a 3D insect cinema

Stereopsis - 3D vision – has become widely used as a model of perception. However, all our knowledge of possible underlying mechanisms comes almost exclusively from vertebrates. While stereopsis has been demonstrated for one invertebrate, the praying mantis, a lack of techniques to probe invertebrate stereopsis has prevented any further progress for three decades. We therefore developed a stereoscopic display system for insects, using miniature 3D glasses to present separate images to each eye, and tested our ability to deliver stereoscopic illusions to praying mantises. We find that while filtering by circular polarization failed due to excessive crosstalk, “anaglyph” filtering by spectral content clearly succeeded in giving the mantis the illusion of 3D depth. We thus definitively demonstrate stereopsis in mantises and also demonstrate that the anaglyph technique can be effectively used to deliver virtual 3D stimuli to insects. This method opens up broad avenues of research into the parallel evolution of stereoscopic computations and possible new algorithms for depth perception.

[1]  Denis G. Pelli,et al.  ECVP '07 Abstracts , 2007, Perception.

[2]  G. Poggio,et al.  Stereoscopic mechanisms in monkey visual cortex: binocular correlation and disparity selectivity , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  R. F. van der Willigen,et al.  Owls see in stereo much like humans do. , 2011, Journal of vision.

[4]  Andrew J. Woods How are crosstalk and ghosting defined in the stereoscopic literature? , 2011, Electronic Imaging.

[5]  Gregory C DeAngelis,et al.  Disparity Channels in Early Vision , 2007, The Journal of Neuroscience.

[6]  S. Zeki The representation of colours in the cerebral cortex , 1980, Nature.

[7]  S Rossel Binocular vision in insects: How mantids solve the correspondence problem. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[8]  R. F. van der Willigen,et al.  Owls see in stereo much like humans do , 2011 .

[9]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[10]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[11]  T. Collett Stereopsis in toads , 1977, Nature.

[12]  Robert F. van der Willigen,et al.  Owls see in stereo much like humans , 2011 .

[13]  Clifton Schor,et al.  Interocular differences in contrast and spatial frequency: Effects on stereopsis and fusion , 1989, Vision Research.

[14]  Turid Rustad,et al.  Acknowledgements , 1996, Schizophrenia Research.

[15]  A. Parker Binocular depth perception and the cerebral cortex , 2007, Nature Reviews Neuroscience.

[16]  T. Collett Vision: Simple stereopsis , 1996, Current Biology.

[17]  Samuel Rossel,et al.  Regional differences in photoreceptor performance in the eye of the praying mantis , 1979, Journal of comparative physiology.

[18]  Samuel Rossel,et al.  Binocular stereopsis in an insect , 1983, Nature.

[19]  Moojong Lim,et al.  Analysis of angular dependence of 3‐D technology using polarized eyeglasses , 2010 .

[20]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[21]  Charles Sontag,et al.  Spectral Sensitivity Studies on the Visual System of the Praying Mantis, Tenodera sinensis , 1971, The Journal of general physiology.

[22]  Reinhard Wolf,et al.  Motion vision is independent of color in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[23]  Jenny Read,et al.  Visual Perception: One World from Two Eyes , 2013, Current Biology.

[24]  H. K. Hartline,et al.  SPATIAL SUMMATION OF INHIBITORY INFLUENCES IN THE EYE OF LIMULUS, AND THE MUTUAL INTERACTION OF RECEPTOR UNITS , 1958, The Journal of general physiology.

[25]  H Maldonado,et al.  Depth perception in the praying mantis. , 1972, Physiology & behavior.

[26]  H. Maldonado,et al.  Study of the role of the binocular vision in mantids to estimate long distances, using the deimatic reaction as experimental situation , 1970, Zeitschrift für vergleichende Physiologie.

[27]  W. Gärtner,et al.  The primary structure of mantid opsin. , 1994, Gene.

[28]  G C DeAngelis,et al.  The physiology of stereopsis. , 2001, Annual review of neuroscience.

[29]  R. Blake,et al.  How Contrast Affects Stereoacuity , 1988, Perception.

[30]  B. G. Cumming,et al.  Responses of primary visual cortical neurons to binocular disparity without depth perception , 1997, Nature.

[31]  Jiawei Zhou,et al.  Stereopsis and mean luminance. , 2013, Journal of vision.

[32]  Andrew J. Woods,et al.  Comparing levels of crosstalk with red/cyan, blue/yellow, and green/magenta anaglyph 3D glasses , 2010, Electronic Imaging.

[33]  Gian F. Poggio,et al.  Mechanisms of stereopsis in monkey visual cortex , 1979, Trends in Neurosciences.

[34]  W H Pratt Stereoscopic vision. , Science.

[35]  Brian Timney,et al.  Local and global stereopsis in the horse , 1999, Vision Research.

[36]  O. Braddick,et al.  Seeing in Depth , 2008 .

[37]  Masaaki Kawahashi,et al.  Renovation of Journal of Visualization , 2010, J. Vis..

[38]  F. Prete,et al.  Appetitive responses to computer-generated visual stimuli by the praying mantis Sphodromantis lineola(Burr.) , 1993, Visual Neuroscience.

[39]  L K Cormack,et al.  Interactions of Spatial Frequency and Unequal Monocular Contrasts in Stereopsis , 1997, Perception.

[40]  L L Cornforth,et al.  Chromatic Imbalance Due to Commonly Used Red‐Green Filters Reduces Accuracy of Stereoscopic Depth Perception , 1987, American journal of optometry and physiological optics.

[41]  D. Nilsson,et al.  Eye ancestry: Old genes for new eyes , 1996, Current Biology.

[42]  R. Fox,et al.  Stereopsis in the falcon. , 1977, Science.

[43]  E. W. Bough Stereoscopic Vision in the Macaque Monkey: a Behavioural Demonstration , 1970, Nature.