Single-cell multi-omics of mitochondrial DNA disorders reveals dynamics of purifying selection across human immune cells

[1]  J. Aiken,et al.  Nanopore sequencing identifies a higher frequency and expanded spectrum of mitochondrial DNA deletion mutations in human aging , 2022, bioRxiv.

[2]  Paul J. Hoffman,et al.  Dictionary learning for integrative, multimodal and scalable single-cell analysis , 2022, bioRxiv.

[3]  C. Lareau,et al.  Single-cell chromatin state analysis with Signac , 2021, Nature Methods.

[4]  D. Cantrell,et al.  Mitochondrial translation is required for sustained killing by cytotoxic T cells , 2021, Science.

[5]  E. Banks,et al.  High-throughput RNA isoform sequencing using programmable cDNA concatenation , 2021, bioRxiv.

[6]  M. Battaglia,et al.  Uridine and pyruvate protect T cells’ proliferative capacity from mitochondrial toxic antibiotics: a clinical pilot study , 2021, Scientific Reports.

[7]  Bertrand Z. Yeung,et al.  Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells , 2021, Nature Biotechnology.

[8]  B. Taylor,et al.  Respiratory complex and tissue lineage drive recurrent mutations in tumour mtDNA , 2021, Nature Metabolism.

[9]  Howard Y. Chang,et al.  ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis , 2021, Nature Genetics.

[10]  E. Larsson,et al.  Accurate mapping of mitochondrial DNA deletions and duplications using deep sequencing , 2020, PLoS genetics.

[11]  S. Miyano,et al.  Acquisition of monosomy 7 and a RUNX1 mutation in Pearson syndrome , 2020, Pediatric blood & cancer.

[12]  Raphael Gottardo,et al.  Integrated analysis of multimodal single-cell data , 2020, Cell.

[13]  P. Chinnery,et al.  Extreme heterogeneity of human mitochondrial DNA from organelles to populations , 2020, Nature reviews. Genetics.

[14]  Laura C. Greaves,et al.  Age-associated mitochondrial DNA mutations cause metabolic remodeling that contributes to accelerated intestinal tumorigenesis , 2020, Nature Cancer.

[15]  Robert W. Taylor,et al.  Ultrasensitive deletion detection links mitochondrial DNA replication, disease, and aging , 2020, Genome biology.

[16]  A. Regev,et al.  Purifying Selection against Pathogenic Mitochondrial DNA in Human T Cells. , 2020, The New England journal of medicine.

[17]  Martin J. Aryee,et al.  Massively parallel single-cell mitochondrial DNA genotyping and chromatin profiling , 2020, Nature Biotechnology.

[18]  T. Hinks,et al.  MAIT Cell Activation and Functions , 2020, Frontiers in Immunology.

[19]  Laura C. Greaves,et al.  The rise and rise of mitochondrial DNA mutations , 2020, Open Biology.

[20]  S. Dimauro,et al.  The North American mitochondrial disease registry , 2020, Journal of translational genetics and genomics.

[21]  E. White,et al.  Serine Catabolism Feeds NADH when Respiration Is Impaired. , 2020, Cell metabolism.

[22]  Howard Y. Chang,et al.  Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia , 2019, Nature Biotechnology.

[23]  Christopher D. Brown,et al.  The GTEx Consortium atlas of genetic regulatory effects across human tissues , 2019, Science.

[24]  Aviv Regev,et al.  Transcriptional States and Chromatin Accessibility Underlying Human Erythropoiesis , 2019, Cell Reports.

[25]  C. Bris,et al.  eKLIPse: a sensitive tool for the detection and quantification of mitochondrial DNA deletions from next-generation sequencing data , 2018, Genetics in Medicine.

[26]  Robert W. Taylor,et al.  Understanding mitochondrial DNA maintenance disorders at the single muscle fibre level , 2019, Nucleic acids research.

[27]  Jing Wang,et al.  WebGestalt 2019: gene set analysis toolkit with revamped UIs and APIs , 2019, Nucleic Acids Res..

[28]  Howard Y. Chang,et al.  Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion , 2019, Nature Biotechnology.

[29]  Allon M Klein,et al.  Scrublet: Computational Identification of Cell Doublets in Single-Cell Transcriptomic Data. , 2019, Cell systems.

[30]  R. Myers,et al.  Splice-Break: exploiting an RNA-seq splice junction algorithm to discover mitochondrial DNA deletion breakpoints and analyses of psychiatric disorders , 2019, Nucleic acids research.

[31]  Martin J. Aryee,et al.  Lineage Tracing in Humans Enabled by Mitochondrial Mutations and Single-Cell Genomics , 2019, Cell.

[32]  R. Satija,et al.  Integrative single-cell analysis , 2019, Nature Reviews Genetics.

[33]  Howard Y. Chang,et al.  Single-cell lineage tracing by endogenous mutations enriched in transposase accessible mitochondrial DNA , 2018, bioRxiv.

[34]  Fan Zhang,et al.  Fast, sensitive, and accurate integration of single cell data with Harmony , 2018, bioRxiv.

[35]  Sören Müller,et al.  CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones , 2018, Bioinform..

[36]  Martin J. Aryee,et al.  Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation , 2018, Cell.

[37]  C. Dufour,et al.  Pearson syndrome , 2018, Expert review of hematology.

[38]  O. Tysnes,et al.  Ultradeep mapping of neuronal mitochondrial deletions in Parkinson's disease , 2018, Neurobiology of Aging.

[39]  Charlotte Soneson,et al.  Bias, robustness and scalability in single-cell differential expression analysis , 2018, Nature Methods.

[40]  T. Lucas,et al.  Pervasive within-Mitochondrion Single-Nucleotide Variant Heteroplasmy as Revealed by Single-Mitochondrion Sequencing. , 2017, Cell reports.

[41]  A. Sewell,et al.  Metabolic Adaptation of Human CD4+ and CD8+ T-Cells to T-Cell Receptor-Mediated Stimulation , 2017, Front. Immunol..

[42]  J. Todd,et al.  Neonatal and adult recent thymic emigrants produce IL-8 and express complement receptors CR1 and CR2 , 2017, JCI insight.

[43]  C. Ponting,et al.  Single-Cell Multiomics: Multiple Measurements from Single Cells , 2017, Trends in genetics : TIG.

[44]  Karen H. Vousden,et al.  Serine and one-carbon metabolism in cancer , 2016, Nature Reviews Cancer.

[45]  Lior Pachter,et al.  Near-optimal probabilistic RNA-seq quantification , 2016, Nature Biotechnology.

[46]  Jacob C. Ulirsch,et al.  Targeted Application of Human Genetic Variation Can Improve Red Blood Cell Production from Stem Cells. , 2016, Cell stem cell.

[47]  Patrick F. Chinnery,et al.  The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease , 2015, Nature Reviews Genetics.

[48]  Guillaume Calmettes,et al.  Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases. , 2015, Biochimica et biophysica acta.

[49]  M. Weiss,et al.  Anemia: progress in molecular mechanisms and therapies , 2015, Nature Medicine.

[50]  M. Fleming,et al.  Pearson marrow pancreas syndrome in patients suspected to have Diamond-Blackfan anemia. , 2014, Blood.

[51]  G. Enns,et al.  Degree of Glutathione Deficiency and Redox Imbalance Depend on Subtype of Mitochondrial Disease and Clinical Status , 2014, PloS one.

[52]  Mahdi Sarmady,et al.  mtDNA Variation and Analysis Using Mitomap and Mitomaster , 2013, Current protocols in bioinformatics.

[53]  D. Wallace,et al.  Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease. , 2013, Cold Spring Harbor perspectives in biology.

[54]  G. Daley,et al.  Induced Pluripotent Stem Cells with a Mitochondrial DNA Deletion , 2013, Stem cells.

[55]  N. Taylor,et al.  Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. , 2013, Blood.

[56]  M. Hanna,et al.  Single deletions in mitochondrial DNA – Molecular mechanisms and disease phenotypes in clinical practice , 2012, Neuromuscular Disorders.

[57]  Young-Uk Cho,et al.  A combination of CD15/CD10, CD64/CD33, CD16/CD13 or CD11b flow cytometric granulocyte panels is sensitive and specific for diagnosis of myelodysplastic syndrome. , 2012, Annals of clinical and laboratory science.

[58]  G. V. D. van der Windt,et al.  Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. , 2012, Immunity.

[59]  A. Iolascon,et al.  Oxidative stress modulates heme synthesis and induces peroxiredoxin-2 as a novel cytoprotective response in β-thalassemic erythropoiesis , 2011, Haematologica.

[60]  S. Dimauro,et al.  Mitochondrial DNA Deletion Syndromes , 2011 .

[61]  Davis J. McCarthy,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[62]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[63]  David C Samuels,et al.  What causes mitochondrial DNA deletions in human cells? , 2008, Nature Genetics.

[64]  Y. Li,et al.  Four-color flow cytometry shows strong concordance with bone marrow morphology and cytogenetics in the evaluation for myelodysplasia. , 2005, American journal of clinical pathology.

[65]  T. D. Pugh,et al.  Mitochondrial DNA Mutations, Oxidative Stress, and Apoptosis in Mammalian Aging , 2005, Science.

[66]  Howard T. Jacobs,et al.  Premature ageing in mice expressing defective mitochondrial DNA polymerase , 2004, Nature.

[67]  J. Harbott,et al.  Refractory anemia in childhood: a retrospective analysis of 67 patients with particular reference to monosomy 7. , 2003, Blood.

[68]  M. King,et al.  Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. , 1989, Science.