The Backdoor Key: A Path to Understanding Problem Hardness

We introduce our work on the backdoor key, a concept that shows promise for characterizing problem hardness in backtracking search algorithms. The general notion of backdoors was recently introduced to explain the source of heavy-tailed behaviors in backtracking algorithms (Williams, Gomes, & Selman 2003a; 2003b). We describe empirical studies that show that the key faction, i.e., the ratio of the key size to the corresponding backdoor size, is a good predictor of problem hardness of ensembles and individual instances within an ensemble for structure domains with large key fraction.

[1]  K. G. Ramakrishnan,et al.  An interior point approach to Boolean vector function synthesis , 1993, Proceedings of 36th Midwest Symposium on Circuits and Systems.

[2]  Toby Walsh,et al.  The Constrainedness of Search , 1996, AAAI/IAAI, Vol. 1.

[3]  Chu Min Li,et al.  Heuristics Based on Unit Propagation for Satisfiability Problems , 1997, IJCAI.

[4]  Karem A. Sakallah,et al.  GRASP—a new search algorithm for satisfiability , 1996, ICCAD 1996.

[5]  Bart Selman,et al.  Generating Satisfiable Problem Instances , 2000, AAAI/IAAI.

[6]  Patrick Prosser,et al.  An Empirical Study of Phase Transitions in Binary Constraint Satisfaction Problems , 1996, Artif. Intell..

[7]  Sharad Malik,et al.  Chaff: engineering an efficient SAT solver , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[8]  Alan Smaill,et al.  Backbone Fragility and the Local Search Cost Peak , 2000, J. Artif. Intell. Res..

[9]  Bart Selman,et al.  Problem Structure in the Presence of Perturbations , 1997, AAAI/IAAI.

[10]  Bart Selman,et al.  On the connections between backdoors, restarts, and heavy-tailedness in combinatorial search , 2003 .

[11]  Bart Selman,et al.  Pushing the Envelope: Planning, Propositional Logic and Stochastic Search , 1996, AAAI/IAAI, Vol. 2.

[12]  Bart Selman,et al.  Balance and Filtering in Structured Satisfiable Problems (Preliminary Report) , 2001, Electron. Notes Discret. Math..

[13]  Tad Hogg,et al.  A New Look at the Easy-Hard-Easy Pattern of Combinatorial Search Difficulty , 1997, J. Artif. Intell. Res..

[14]  Toby Walsh,et al.  Backbones in Optimization and Approximation , 2001, IJCAI.

[15]  Roberto J. Bayardo,et al.  Using CSP Look-Back Techniques to Solve Real-World SAT Instances , 1997, AAAI/IAAI.

[16]  Bart Selman,et al.  Boosting Combinatorial Search Through Randomization , 1998, AAAI/IAAI.

[17]  Toby Walsh,et al.  Morphing: Combining Structure and Randomness , 1999, AAAI/IAAI.

[18]  Hantao Zhang,et al.  SATO: An Efficient Propositional Prover , 1997, CADE.

[19]  Bart Selman,et al.  Backdoors To Typical Case Complexity , 2003, IJCAI.

[20]  Bart Selman,et al.  Balance and Filtering in Structured Satisfiable Problems , 2001, IJCAI.

[21]  S Kirkpatrick,et al.  Critical Behavior in the Satisfiability of Random Boolean Expressions , 1994, Science.

[22]  Barbara M. Smith,et al.  The Phase Transition and the Mushy Region in Constraint Satisfaction Problems , 1994, ECAI.

[23]  Joseph C. Culberson,et al.  Frozen development in graph coloring , 2001, Theor. Comput. Sci..

[24]  Joao Marques-Silva,et al.  GRASP-A new search algorithm for satisfiability , 1996, Proceedings of International Conference on Computer Aided Design.

[25]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[26]  Sharad Malik,et al.  Efficient conflict driven learning in a Boolean satisfiability solver , 2001, IEEE/ACM International Conference on Computer Aided Design. ICCAD 2001. IEEE/ACM Digest of Technical Papers (Cat. No.01CH37281).

[27]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.