Pigment organization and energy transfer in green bacteria. 2. Circular and linear dichroism spectra of protein-containing and protein-free chlorosomes isolated from Chloroflexus aurantiacus strain Ok-70-fl

[1]  J. Olson,et al.  Reversible conversion of aggregated bacteriochlorophyll c to the monomeric form by 1-hexanol in chlorosomes from Chlorobium and Chloroflexus , 1990 .

[2]  K. Griebenow,et al.  Picosecond energy transfer kinetics between pigment pools in different preparations of chlorosomes from the green bacterium Chloroflexus aurantiacus Ok-70-fl , 1990 .

[3]  K. Griebenow,et al.  Pigment organization and energy transfer in green bacteria 1. Isolation of native chlorosomes free of bound bacteriochlorophyll a from Chloroflexus aurantiacus by gel-electrophoretic filtration , 1989 .

[4]  R. van Grondelle,et al.  Linear dichroism of chlorosomes from chloroflexus aurantiacus in compressed gels and electric fields. , 1988, Biophysical journal.

[5]  P. Loach,et al.  Reconstitution of the B873 light-harvesting complex of Rhodospirillum rubrum from the separately isolated alpha- and beta-polypeptides and bacteriochlorophyll a. , 1988, Biochemistry.

[6]  Robert Eugene Blankenship,et al.  Antenna organization in green photosynthetic bacteria. 1. Oligomeric bacteriochlorophyll c as a model for the 740 nm absorbing bacteriochlorophyll c in Chloroflexus aurantiacus chlorosomes. , 1987, Biochemistry.

[7]  S. H. Moss,et al.  LIPID PEROXIDATION AND OTHER MEMBRANE DAMAGE PRODUCED IN Escherichia coli K1060 BY NEAR‐UV RADIATION AND DEUTERIUM OXIDE , 1987, Photochemistry and photobiology.

[8]  R. Cogdell,et al.  CIRCULAR DICHROISM OF LIGHT‐HARVESTING COMPLEXES FROM PURPLE PHOTOSYNTHETIC BACTERIA * , 1985 .

[9]  Kevin M. Smith,et al.  Aggregation of the bacteriochlorophylls c, d, and e. Models for the antenna chlorophylls of green and brown photosynthetic bacteria , 1983 .

[10]  L. Natarajan,et al.  Antenna organization and evidence for the function of a new antenna pigment species in the green photosynthetic bacterium Chloroflexus aurantiacus , 1982 .

[11]  R. Fuller,et al.  Isolation and characterization of cytoplasmic membranes and chlorosomes from the green bacterium Chloroflexus aurantiacus , 1982, Journal of bacteriology.

[12]  L. Staehelin,et al.  Isolation and development of chlorosomes in the green bacterium Chloroflexus aurantiacus , 1981, Journal of bacteriology.

[13]  J. Olson Chlorophyll organization in green photosynthetic bacteria. , 1980, Biochimica et biophysica acta.

[14]  K. Sauer,et al.  Bacteriochlorophyll-protein complexes from the light-harvesting antenna of photosynthetic bacteria. , 1978, Biochemistry.

[15]  R. Castenholz,et al.  Bacteriochlorophylls in gliding filamentous prokaryotes from hot springs. , 1971, Nature: New biology.

[16]  C. Houssier,et al.  Circular dichroism and magnetic circular dichroism of the chlorophyll and protochlorophyll pigments , 1970 .

[17]  T. Ebrey,et al.  POLARIZATION OF FLUORESCENCE FROM BACTERIOCHLOROPHYLL IN CASTOR OIL, IN CHROMATOPHORES AND AS P870 IN PHOTOSYNTHETIC REACTION CENTERS , 1969 .

[18]  G. Feher,et al.  Current Research in Photosynthesis , 1990, Springer Netherlands.

[19]  K. Griebenow,et al.  Characterization of light-harvesting pigments of Chloroflexus aurantiacus. Two new chlorophylls: oleyl (octadec-9-enyl) and cetyl (hexadecanyl) bacteriochlorophyllides-c , 1990 .