Plasma-Enhanced Atomic Layer Deposition of Molybdenum Oxide Thin Films at Low Temperatures for Hydrogen Gas Sensing.

Molybdenum oxide thin films are very appealing for gas sensing applications due to their tunable material characteristics. Particularly, the growing demand for developing hydrogen sensors has triggered the exploration of functional materials such as molybdenum oxides (MoOx). Strategies to enhance the performance of MoOx-based gas sensors include nanostructured growth accompanied by precise control of composition and crystallinity. These features can be delivered by using atomic layer deposition (ALD) processing of thin films, where precursor chemistry plays an important role. Herein, we report a new plasma-enhanced ALD process for molybdenum oxide employing the molybdenum precursor [Mo(NtBu)2(tBu2DAD)] (DAD = diazadienyl) and oxygen plasma. Analysis of the film thickness reveals typical ALD characteristics such as linearity and surface saturation with a growth rate of 0.75 Å/cycle in a broad temperature window between 100 and 240 °C. While the films are amorphous at 100 °C, crystalline β-MoO3 is obtained at 240 °C. Compositional analysis reveals nearly stoichiometric and pure MoO3 films with oxygen vacancies present at the surface. Subsequently, hydrogen gas sensitivity of the molybdenum oxide thin films is demonstrated in a laboratory-scale chemiresistive hydrogen sensor setup at an operation temperature of 120 °C. Sensitivities of up to 18% are achieved for the film deposited at 240 °C, showing a strong correlation between crystallinity, oxygen vacancies at the surface, and hydrogen gas sensitivity.

[1]  D. Ghosh,et al.  Large-Area Si Solar Cells Based on Molybdenum Oxide Hole Selective Contacts , 2022, Silicon.

[2]  B. Mondal,et al.  Nanoscale Heterostructured Materials Based on Metal Oxides for a Chemiresistive Gas Sensor , 2022, ACS Applied Electronic Materials.

[3]  S. Seal,et al.  Spatial Atomic Layer Deposition of Molybdenum Oxide for Industrial Solar Cells , 2020, Advanced Materials Interfaces.

[4]  Qu Zhou,et al.  Volatile Organic Compounds Gas Sensors Based on Molybdenum Oxides: A Mini Review , 2020, Frontiers in Chemistry.

[5]  C. Ballif,et al.  23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact , 2020 .

[6]  A. Yanguas-Gil,et al.  Consistency and reproducibility in atomic layer deposition , 2020 .

[7]  Z. Xue,et al.  Morphology evolution and quantitative analysis of β-MoO3 and α-MoO3 , 2020 .

[8]  R. Maric,et al.  Molybdenum Trioxide (α-MoO3) Nanoribbons for Ultrasensitive Ammonia (NH3) Gas Detection: Integrated Experimental and Density Functional Theory Simulation Studies. , 2019, ACS applied materials & interfaces.

[9]  M. Ritala,et al.  Atomic Layer Deposition of Molybdenum and Tungsten Oxide Thin Films Using Heteroleptic Imido-Amidinato Precursors: Process Development, Film Characterization, and Gas Sensing Properties , 2018, Chemistry of Materials.

[10]  Xifei Li,et al.  Synthesis, Functional Modifications, and Diversified Applications of Molybdenum Oxides Micro-/Nanocrystals: A Review , 2018, Crystal Growth & Design.

[11]  Xingzhao Liu,et al.  Characterization of Molybdenum Oxide Thin Films Grown by Atomic Layer Deposition , 2018, Journal of Electronic Materials.

[12]  M. K. Akbari,et al.  Ultra-thin MoO3 film goes wafer-scaled nano-architectonics by atomic layer deposition , 2018, Materials & Design.

[13]  A. Devi,et al.  Designing Stability into Thermally Reactive Plumbylenes. , 2018, Inorganic chemistry.

[14]  Jie Hu,et al.  Atomic layer deposition-developed two-dimensional α-MoO3 windows excellent hydrogen peroxide electrochemical sensing capabilities , 2018 .

[15]  Zhao Wang,et al.  Defect-original room-temperature hydrogen sensing of MoO3 nanoribbon: Experimental and theoretical studies , 2018 .

[16]  R. Datta,et al.  Molybdenum Oxides – From Fundamentals to Functionality , 2017, Advanced materials.

[17]  Su-Huai Wei,et al.  Gas sensing in 2D materials , 2017 .

[18]  Pan Xumin,et al.  Rapid hydrogen sensing response and aging of α-MoO3 nanowires paper sensor , 2017 .

[19]  G. Shter,et al.  Photoelectrochemical water splitting in separate oxygen and hydrogen cells. , 2017, Nature materials.

[20]  Brent D. Keller,et al.  Process Control of Atomic Layer Deposition Molybdenum Oxide Nucleation and Sulfidation to Large-Area MoS2 Monolayers , 2017 .

[21]  Kasper T. Møller,et al.  Hydrogen - A sustainable energy carrier , 2017 .

[22]  E. Sanehira,et al.  High-Work-Function Molybdenum Oxide Hole Extraction Contacts in Hybrid Organic-Inorganic Perovskite Solar Cells. , 2016, ACS applied materials & interfaces.

[23]  A. Cuevas,et al.  n- and p-typesilicon Solar Cells with Molybdenum Oxide Hole Contacts☆ , 2015 .

[24]  A. Bol,et al.  Low‐temperature atomic layer deposition of MoOx for silicon heterojunction solar cells , 2015 .

[25]  R. Wehrspohn,et al.  Plasma-enhanced atomic-layer-deposited MoOx emitters for silicon heterojunction solar cells , 2015 .

[26]  Yu Wang,et al.  Highly Responsive Room-Temperature Hydrogen Sensing of α-MoO₃ Nanoribbon Membranes. , 2015, ACS applied materials & interfaces.

[27]  Beatriz Mendoza-Sánchez,et al.  Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model. , 2015 .

[28]  Zhenghong Lu,et al.  Impact of lattice distortion and electron doping on α-MoO3 electronic structure , 2014, Scientific Reports.

[29]  Wojtek Wlodarski,et al.  Two dimensional α-MoO3 nanoflakes obtained using solvent-assisted grinding and sonication method: Application for H2 gas sensing , 2014 .

[30]  V. Pillai,et al.  Hydrogen and ethanol sensing properties of molybdenum oxide nanorods based thin films: Effect of electrode metallization and humid ambience , 2013 .

[31]  Jian Zhen Ou,et al.  Two‐Dimensional Molybdenum Trioxide and Dichalcogenides , 2013 .

[32]  M. Strano,et al.  Enhanced Charge Carrier Mobility in Two‐Dimensional High Dielectric Molybdenum Oxide , 2013, Advanced materials.

[33]  A. Kahn,et al.  Transition Metal Oxides for Organic Electronics: Energetics, Device Physics and Applications , 2012, Advanced materials.

[34]  R. Kanjolia,et al.  Atomic layer deposition of molybdenum oxide using bis(tert-butylimido)bis(dimethylamido) molybdenum , 2012 .

[35]  S. Darling,et al.  Ultrathin molybdenum oxide anode buffer layer for organic photovoltaic cells formed using atomic layer deposition , 2012 .

[36]  K. Latham,et al.  Electrodeposited alpha- and beta-phase MoO3 films and investigation of their gasochromic properties , 2012 .

[37]  D. Nečas,et al.  Gwyddion: an open-source software for SPM data analysis , 2012 .

[38]  Tzu-Wen Huang,et al.  Pulsed laser deposition of (MoO3)1 − x(V2O5)x thin films: Preparation, characterization and gasochromic studies , 2010 .

[39]  Saeed Amirjalayer,et al.  All-nitrogen coordinated amidinato/imido complexes of molybdenum and tungsten: syntheses and characterization. , 2010, Inorganic chemistry.

[40]  Wojtek Wlodarski,et al.  Gas sensing properties of thermally evaporated lamellar MoO3 , 2010 .

[41]  G. Zou,et al.  High-pressure Raman scattering and x-ray diffraction of phase transitions in MoO3 , 2009 .

[42]  S. Shivashankar,et al.  Thermogravimetric evaluation of the suitability of precursors for MOCVD , 2008 .

[43]  M. Dieterle,et al.  Raman spectroscopy of molybdenum oxides , 2002 .

[44]  J. Lassègues,et al.  Infrared and Raman spectra of MoO 3 molybdenum trioxides and MoO 3 · xH 2O molybdenum trioxide hydrates , 1995 .

[45]  S. Seal,et al.  Nature of the use of adventitious carbon as a binding energy standard , 1995 .

[46]  M. Figlarz,et al.  Structural filiation between a new hydrate MoO3·13H2O and a new monoclinic form of MoO3 obtained by dehydration , 1989 .

[47]  R. Colton,et al.  Trapped electrons in substoichiometric MoO3 observed by X-ray electron spectroscopy , 1974 .

[48]  Adam F. Chrimes,et al.  High‐Performance Field Effect Transistors Using Electronic Inks of 2D Molybdenum Oxide Nanoflakes , 2016 .

[49]  A. Bol,et al.  Atomic layer deposition of molybdenum oxide from (NtBu)2(NMe2)2Mo and O2 plasma , 2016 .

[50]  H. Dinh,et al.  Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols , 2013 .

[51]  B. Weckhuysen,et al.  Combination of characterization techniques for atomic layer deposition MoO3 coatings: From the amorphous to the orthorhombic α-MoO3 crystalline phase , 2012 .

[52]  A. Kahn,et al.  Electronic structure of molybdenum-oxide films and associated charge injection mechanisms in organic devices , 2011 .

[53]  Po-Tsung Hsieh,et al.  Post-annealing effect upon optical properties of electron beam evaporated molybdenum oxide thin films , 2009 .

[54]  M. Suvanto,et al.  Atomic Layer Deposition of Molybdenum Nitride from Bis(tert-butylimido)-bis(dimethylamido)molybdenum and Ammonia onto Several Types of Substrate Materials with Equal Growth per Cycle , 2007 .

[55]  J. Howard,et al.  Four coordinate bis(imido) alkene complexes of molybdenum(IV): relatives of the zirconocene family , 1992 .

[56]  A. Magnéli,et al.  Studies on Molybdenum Oxides. , 1959 .