Two new results about quantum exact learning

We present two new results about exact learning by quantum computers. First, we show how to exactly learn a $k$-Fourier-sparse $n$-bit Boolean function from $O(k^{1.5}(\log k)^2)$ uniform quantum examples for that function. This improves over the bound of $\widetilde{\Theta}(kn)$ uniformly random classical examples (Haviv and Regev, CCC'15). Our main tool is an improvement of Chang's lemma for the special case of sparse functions. Second, we show that if a concept class $\mathcal{C}$ can be exactly learned using $Q$ quantum membership queries, then it can also be learned using $O\left(\frac{Q^2}{\log Q}\log|\mathcal{C}|\right)$ classical membership queries. This improves the previous-best simulation result (Servedio and Gortler, SICOMP'04) by a $\log Q$-factor.

[1]  Peter Wittek,et al.  Quantum Machine Learning: What Quantum Computing Means to Data Mining , 2014 .

[2]  Aram W. Harrow,et al.  Quantum algorithm for solving linear systems of equations , 2010 .

[3]  Swagato Sanyal Near-Optimal Upper Bound on Fourier Dimension of Boolean Functions in Terms of Fourier Sparsity , 2015, ICALP.

[4]  Ryan O'Donnell,et al.  Learning functions of k relevant variables , 2004, J. Comput. Syst. Sci..

[5]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[6]  Mei-Chu Chang A polynomial bound in Freiman's theorem , 2002 .

[7]  T. Sanders,et al.  Analysis of Boolean Functions , 2012, ArXiv.

[8]  J. Bourgain An Improved Estimate in the Restricted Isometry Problem , 2014 .

[9]  M. Rudelson,et al.  On sparse reconstruction from Fourier and Gaussian measurements , 2008 .

[10]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[11]  Venkatesan Guruswami,et al.  Restricted Isometry of Fourier Matrices and List Decodability of Random Linear Codes , 2012, SIAM J. Comput..

[12]  Ronald de Wolf,et al.  Optimal Quantum Sample Complexity of Learning Algorithms , 2016, CCC.

[13]  Andris Ambainis,et al.  Quantum lower bounds by quantum arguments , 2000, STOC '00.

[14]  Rocco A. Servedio,et al.  Equivalences and Separations Between Quantum and Classical Learnability , 2004, SIAM J. Comput..

[15]  Andrew Chi-Chih Yao,et al.  Probabilistic computations: Toward a unified measure of complexity , 1977, 18th Annual Symposium on Foundations of Computer Science (sfcs 1977).

[16]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[17]  A. Harrow,et al.  Quantum algorithm for linear systems of equations. , 2008, Physical review letters.

[18]  Mario Szegedy,et al.  All Quantum Adversary Methods Are Equivalent , 2005, ICALP.

[19]  Umesh V. Vazirani,et al.  Quantum complexity theory , 1993, STOC.

[20]  Alexander Russell,et al.  An Entropic Proof of Chang's Inequality , 2014, SIAM J. Discret. Math..

[21]  Nader H. Bshouty,et al.  Learning DNF over the uniform distribution using a quantum example oracle , 1995, COLT '95.

[22]  RegevOded,et al.  The List-Decoding Size of Fourier-Sparse Boolean Functions , 2016 .

[23]  Rocco A. Servedio,et al.  Quantum Algorithms for Learning and Testing Juntas , 2007, Quantum Inf. Process..

[24]  F. Petruccione,et al.  An introduction to quantum machine learning , 2014, Contemporary Physics.

[25]  Michael E. Saks,et al.  Quantum query complexity and semi-definite programming , 2003, 18th IEEE Annual Conference on Computational Complexity, 2003. Proceedings..

[26]  Ronald de Wolf,et al.  Guest Column: A Survey of Quantum Learning Theory , 2017, SIGA.

[27]  Matthew Day,et al.  Advances in quantum machine learning , 2015, 1512.02900.

[28]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[29]  Leslie G. Valiant,et al.  A theory of the learnable , 1984, STOC '84.

[30]  Ronald de Wolf,et al.  A Survey of Quantum Learning Theory , 2017, ArXiv.

[31]  Piotr Indyk,et al.  Sample-Optimal Fourier Sampling in Any Constant Dimension , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[32]  Rocco A. Servedio,et al.  Testing Fourier Dimensionality and Sparsity , 2009, SIAM J. Comput..

[33]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[34]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[35]  Ronald de Wolf,et al.  A Brief Introduction to Fourier Analysis on the Boolean Cube , 2008, Theory Comput..

[36]  Piotr Indyk,et al.  Nearly optimal sparse fourier transform , 2012, STOC '12.

[37]  Oded Regev,et al.  The List-Decoding Size of Fourier-Sparse Boolean Functions , 2015, TOCT.

[38]  Karsten A. Verbeurgt Learning DNF under the uniform distribution in quasi-polynomial time , 1990, COLT '90.