Microstructural Modeling and Computational Homogenization of the Physically Linear and Nonlinear Constitutive Behavior of Micro-Heterogeneous Materials

Most engineering materials show a pronounced heterogeneity on a smaller scale that influences the macroscopic constitutive behavior. In order to examine this relation, the concept of model microstructures is introduced. Algorithms for the periodic discretization are presented for use in thermomechanical homogenization based on the finite element method. Polycrystalline metals, metal ceramic composites and porous materials are investigated. The microstructures are used in the Nonuniform Transformation Field Analysis (NTFA). The NTFA is an order reduction based nonlinear homogenization method with micro-mechanical background. Theoretical and numerical aspects of the method are discussed and its efficiency is validated. Further, Monte Carlo type simulations on periodic porous aggregates are performed in order to predict the macroscopic yield surface of such materials. The thereby generated yield curves are compared to existing models.

[1]  Pedro Ponte Castañeda The effective mechanical properties of nonlinear isotropic composites , 1991 .

[2]  Kari Karhunen,et al.  Über lineare Methoden in der Wahrscheinlichkeitsrechnung , 1947 .

[3]  B. Schrefler,et al.  Multiscale Methods for Composites: A Review , 2009 .

[4]  V. Tvergaard Influence of voids on shear band instabilities under plane strain conditions , 1981 .

[5]  D. Jeulin,et al.  Determination of the size of the representative volume element for random composites: statistical and numerical approach , 2003 .

[6]  Klaus Gärtner,et al.  Meshing Piecewise Linear Complexes by Constrained Delaunay Tetrahedralizations , 2005, IMR.

[7]  L. Walpole On bounds for the overall elastic moduli of inhomogeneous systems—I , 1966 .

[8]  A. Mortensen,et al.  Investigation of crack-tip plasticity in high volume fraction particulate metal matrix composites , 2004 .

[9]  S. Torquato,et al.  Random Heterogeneous Materials: Microstructure and Macroscopic Properties , 2005 .

[10]  C. Smith,et al.  A Study of Grain Shape in an Aluminum Alloy and other Applications of Stereoscopic Microradiography , 1952 .

[11]  J. Michel,et al.  NONUNIFORM TRANSFORMATION FIELD ANALYSIS: A REDUCED MODEL FOR MULTISCALE NONLINEAR PROBLEMS IN SOLID MECHANICS , 2009 .

[12]  P. M. Squet Local and Global Aspects in the Mathematical Theory of Plasticity , 1985 .

[13]  S. Nikolov,et al.  Revealing the Design Principles of High‐Performance Biological Composites Using Ab initio and Multiscale Simulations: The Example of Lobster Cuticle , 2010, Advanced materials.

[14]  D. Jeulin,et al.  Finite element simulations of the deformation of fused-cast refractories based on X-Ray computed tomography , 2007 .

[15]  S. Kurtz,et al.  Simulation of material microstructure using a 3D voronoi tesselation: Calculation of effective thermal expansion coefficient of polycrystalline materials , 1994 .

[16]  Pierre Suquet,et al.  Computational analysis of nonlinear composite structures using the Nonuniform Transformation Field Analysis , 2004 .

[17]  G. Cailletaud,et al.  FE modelling of bainitic steels using crystal plasticity , 2008 .

[18]  K. Schladitz,et al.  Modelling a ceramic foam using locally adaptable morphology , 2008, Journal of microscopy.

[19]  Frank Mücklich,et al.  Statistical Analysis of Microstructures in Materials Science , 2000 .

[20]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[21]  I. Doghri,et al.  Mean-field homogenization of multi-phase thermo-elastic composites: a general framework and its validation , 2004 .

[22]  Dominique Jeulin,et al.  Apparent and effective physical properties of heterogeneous materials: Representativity of samples of two materials from food industry , 2006 .

[23]  J. Chaboche,et al.  Fatigue damage analysis of unidirectional metal matrix composites , 2006 .

[24]  S. Kurtz,et al.  Monte-Carlo study of angular and edge length distributions in a three-dimensional Poisson-Voronoi tesselation , 1995 .

[25]  E. Kröner Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls , 1958 .

[26]  Michael Ortiz,et al.  Nonconvex energy minimization and dislocation structures in ductile single crystals , 1999 .

[27]  C. Truesdell,et al.  The Non-Linear Field Theories Of Mechanics , 1992 .

[28]  M. Cherkaoui,et al.  Fundamentals of Micromechanics of Solids , 2006 .

[29]  Peter Wriggers,et al.  An Introduction to Computational Micromechanics , 2004 .

[30]  David Ryckelynck,et al.  Multi-level A Priori Hyper-Reduction of mechanical models involving internal variables , 2017 .

[31]  U. Galvanetto,et al.  Constitutive relations involving internal variables based on a micromechanical analysis , 2000 .

[32]  J. Willis Bounds and self-consistent estimates for the overall properties of anisotropic composites , 1977 .

[33]  Christian Miehe,et al.  Strain‐driven homogenization of inelastic microstructures and composites based on an incremental variational formulation , 2002 .

[34]  J. Schröder,et al.  Computational micro-macro transitions and overall moduli in the analysis of polycrystals at large strains , 1999 .

[35]  E. Kröner Bounds for effective elastic moduli of disordered materials , 1977 .

[36]  Hervé Moulinec,et al.  A numerical method for computing the overall response of nonlinear composites with complex microstructure , 1998, ArXiv.

[37]  Marcin Kamiński,et al.  Computational Mechanics of Composite Materials: Sensitivity, Randomness and Multiscale Behaviour , 2004 .

[38]  Ingemar Ragnemalm,et al.  Fast erosion and dilation by contour processing and thresholding of distance maps , 1992, Pattern Recognit. Lett..

[39]  Bernd Jähne,et al.  Digitale Bildverarbeitung (6. Aufl.) , 2005 .

[40]  Laurent Stainier,et al.  Study and validation of a variational theory of thermo-mechanical coupling in finite visco-plasticity , 2010 .

[41]  A. Needleman,et al.  Fundamentals of metal-matrix composites , 1993 .

[42]  J. Rychelewski Unconventional approach to linear elasticity , 1995 .

[43]  A. Rollett,et al.  Orientation image-based micromechanical modelling of subgrain texture evolution in polycrystalline copper , 2008 .

[44]  Richard Von Mises,et al.  Mechanik der plastischen Formänderung von Kristallen , 1928 .

[45]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[46]  K. Tanaka,et al.  Average stress in matrix and average elastic energy of materials with misfitting inclusions , 1973 .

[47]  F. Murnaghan The unitary and rotation groups , 1962 .

[48]  M. Ostoja-Starzewski,et al.  Scale and boundary conditions effects in elastic properties of random composites , 2001 .

[49]  W. Brekelmans,et al.  Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling , 1998 .

[50]  Leon Mishnaevsky,et al.  Computational mesomechanics of composites , 2007 .

[51]  V. monchiet,et al.  An improvement of Gurson-type models of porous materials by using Eshelby-like trial velocity fields , 2007 .

[52]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[53]  D. McDowell,et al.  Multifunctional design of two-dimensional cellular materials with tailored mesostructure , 2009 .

[54]  Joachim Sch NETGEN An advancing front 2D/3D-mesh generator based on abstract rules , 1997 .

[55]  Jiangyu Li On micromechanics approximation for the effective thermoelastic moduli of multi-phase composite materials , 1999 .

[56]  Alexander Mielke,et al.  Existence of Minimizers in Incremental Elasto-Plasticity with Finite Strains , 2004, SIAM J. Math. Anal..

[57]  David Ryckelynck,et al.  Toward “green” mechanical simulations in materials science , 2010 .

[58]  C. Holmes,et al.  A probabilistic nearest neighbour method for statistical pattern recognition , 2002 .

[59]  P. Suquet,et al.  Exact results and approximate models for porous viscoplastic solids , 1994 .

[60]  Pierre Suquet,et al.  Nonuniform transformation field analysis of elastic–viscoplastic composites , 2009 .

[61]  W. Voigt,et al.  Lehrbuch der Kristallphysik , 1966 .

[62]  Michel Loève,et al.  Probability Theory I , 1977 .

[63]  J. Michel,et al.  Nonuniform transformation field analysis , 2003 .

[64]  Zvi Hashin,et al.  Effective thermal expansion coefficients and specific heats of composite materials , 1970 .

[65]  David Ryckelynck Hyper‐reduction of mechanical models involving internal variables , 2009 .

[66]  G. E. R. Schulze,et al.  Physikalische Grundlagen mechanischer Festkörpereigenschaften , 1978 .

[67]  P. Ladevèze,et al.  The LATIN multiscale computational method and the Proper Generalized Decomposition , 2010 .

[68]  M. Ortiz,et al.  A variational formulation of the coupled thermo-mechanical boundary-value problem for general dissipative solids , 2006 .

[69]  Rudolf Zeller,et al.  Elastic Constants of Polycrystals , 1973 .

[70]  H. Böhm,et al.  Modeling of the thermal conductivity and thermomechanical behavior of diamond reinforced composites , 2008 .

[71]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.