Direct growth of GaAs-based structures on exactly (001)-oriented Ge/Si virtual substrates: reduction of the structural defect density and observation of electroluminescence at room temperature under CW electrical injection

[1]  E. Fitzgerald,et al.  Crack formation in GaAs heteroepitaxial films on Si and SiGe virtual substrates , 2003 .

[2]  Harry L. T. Lee,et al.  Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers , 2003 .

[3]  Christopher J. Kiely,et al.  General characteristics of crack arrays in epilayers grown under tensile strain , 2000 .

[4]  S. M. Ting,et al.  Metal-organic chemical vapor deposition of single domain GaAs on Ge/GexSi1−x/Si and Ge substrates , 2000 .

[5]  I. Sagnes,et al.  Ge/Si self-assembled quantum dots grown on Si(001) in an industrial high-pressure chemical vapor deposition reactor , 1999 .

[6]  Steven A. Ringel,et al.  Anti-phase domain-free growth of GaAs on offcut (001) Ge wafers by molecular beam epitaxy with suppressed Ge outdiffusion , 1998 .

[7]  L. Lazzarini,et al.  On the sublattice location of GaAs grown on Ge , 1994 .

[8]  P. Komninou,et al.  Generation and annihilation of antiphase domain boundaries in GaAs on Si grown by molecular beam epitaxy , 1993 .

[9]  Alexandros Georgakilas,et al.  Achievements and limitations in optimized GaAs films grown on Si by molecular‐beam epitaxy , 1992 .

[10]  J. Posthill,et al.  Low‐defect‐density germanium on silicon obtained by a novel growth phenomenon , 1992 .

[11]  H. Choi,et al.  GaAs‐based diode lasers on Si with increased lifetime obtained by using strained InGaAs active layer , 1991 .

[12]  Hadis Morkoç,et al.  Gallium arsenide and other compound semiconductors on silicon , 1990 .

[13]  D. B. Holt Antiphase boundaries in semiconducting compounds , 1969 .