Parallel software implementation of recursive multidimensional digital filters for point-target detection in cluttered infrared scenes

A technique for the enhancement of point targets in clutter is described. The local 3-D spectrum at each pixel is estimated recursively. An optical flow-field for the textured background is then generated using the 3-D autocorrelation function and the local velocity estimates are used to apply high-pass velocity-selective spatiotemporal filters, with finite impulse responses (FIRs), to subtract the background clutter signal, leaving the foreground target signal, plus noise. Parallel software implementations using a multicore central processing unit (CPU) and a graphical processing unit (GPU) are investigated.

[1]  Sergiu Nedevschi,et al.  Motion Estimation Using the Correlation Transform , 2013, IEEE Transactions on Image Processing.

[2]  Xiangzhi Bai,et al.  New class of top-hat transformation to enhance infrared small targets , 2008, J. Electronic Imaging.

[3]  Jesús Chamorro-Martínez,et al.  A Spatio-temporal Filtering Approach to Motion Segmentation , 2003, IbPRIA.

[4]  Shu-Mei Guo,et al.  Efficient block-matching motion estimation algorithm , 2013, J. Electronic Imaging.

[5]  Ba-Ngu Vo,et al.  A Tutorial on Bernoulli Filters: Theory, Implementation and Applications , 2013, IEEE Transactions on Signal Processing.

[6]  Marc M. Van Hulle,et al.  A phase-based approach to the estimation of the optical flow field using spatial filtering , 2002, IEEE Trans. Neural Networks.

[7]  Takeshi Takaki,et al.  High-Frame-Rate Optical Flow System , 2012, IEEE Transactions on Circuits and Systems for Video Technology.

[8]  Michael Elad,et al.  On the Design of Filters for Gradient-Based Motion Estimation , 2005, Journal of Mathematical Imaging and Vision.

[9]  Weidong Yang,et al.  Moving dim point target detection with three-dimensional wide-to-exact search directional filtering , 2007, Pattern Recognit. Lett..

[10]  Kenta Fujii,et al.  Motion Analysis Using 3D High-Resolution Frequency Analysis , 2013, IEEE Transactions on Image Processing.

[11]  Leonard T. Bruton,et al.  Multidimensional filtering using combined discrete Fourier transform and linear difference equation methods , 1990 .

[12]  Anton Kummert,et al.  A multidimensional wave digital filter bank for video-based motion analysis , 2014, Multidimens. Syst. Signal Process..

[13]  Yao Zhao,et al.  Bilateral two-dimensional least mean square filter for infrared small target detection , 2014 .

[14]  Marco Diani,et al.  Space-time processing for the detection of airborne targets in IR image sequences , 2001 .

[15]  G. Lampropoulos,et al.  Filtering of moving targets using SBIR sequential frames , 1995, IEEE Transactions on Aerospace and Electronic Systems.

[16]  Marco Diani,et al.  Optimal criterion to select the background estimation algorithm for detection of dim point targets in infrared surveillance systems , 2011 .

[17]  Tim J. Patterson,et al.  Detection algorithms for image sequence analysis , 1989, IEEE Trans. Acoust. Speech Signal Process..

[18]  Anton Kummert,et al.  Motion-based object detection using 3D wave digital filters , 2008, 2008 8th IEEE International Conference on Computer and Information Technology.

[19]  Akira Kojima,et al.  Motion detection using 3D-FFT spectrum , 1993, 1993 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[20]  I. Reed,et al.  A recursive moving-target-indication algorithm for optical image sequences , 1990 .

[21]  Taek Lyul Song,et al.  Aerial-target detection using the recursive temporal profile and spatiotemporal gradient pattern in infrared image sequences , 2012 .

[22]  Jun Kong,et al.  Comparative Performance Analysis of Intel (R) Xeon Phi (TM), GPU, and CPU: A Case Study from Microscopy Image Analysis , 2014, 2014 IEEE 28th International Parallel and Distributed Processing Symposium.

[23]  Alexandre Bernardino,et al.  Fast IIR Isotropic 2-D Complex Gabor Filters With Boundary Initialization , 2006, IEEE Transactions on Image Processing.

[24]  Keith Langley,et al.  Recursive Filters for Optical Flow , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Hugh L. Kennedy,et al.  Multidimensional digital filters for point-target detection in cluttered infrared scenes , 2014, J. Electronic Imaging.

[26]  David W. Thomas,et al.  The two-dimensional adaptive LMS (TDLMS) algorithm , 1988 .

[27]  Benjamin Friedlander,et al.  A Frequency Domain Algorithm for Multiframe Detection and Estimation of Dim Targets , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[28]  SAMUEL J. DAVEY,et al.  Using Phase to Improve Track-Before-Detect , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[29]  Anton Kummert,et al.  On multidimensional velocity filter banks for video-based motion analysis of world-coordinate objects , 2011, The 2011 International Workshop on Multidimensional (nD) Systems.

[30]  Eduardo Ros,et al.  High-Performance Optical-Flow Architecture Based on a Multi-Scale, Multi-Orientation Phase-Based Model , 2010, IEEE Transactions on Circuits and Systems for Video Technology.

[31]  Hugh L. Kennedy,et al.  Digital Filter Designs for Recursive Frequency Analysis , 2014, J. Circuits Syst. Comput..

[32]  James R. Zeidler,et al.  Performance evaluation of 2-D adaptive prediction filters for detection of small objects in image data , 1993, IEEE Trans. Image Process..

[33]  Robin R. Murphy,et al.  A VLSI Architecture and Algorithm for Lucas–Kanade-Based Optical Flow Computation , 2010, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[34]  S. B. Williams,et al.  Multidimensional (MD) Circuits and Systems for Emerging Applications Including Cognitive Radio, Radio Astronomy, Robot Vision and Imaging , 2013, IEEE Circuits and Systems Magazine.

[35]  N.R. Bartley,et al.  Real-time 3-dimensional recursive digital filter for video signals , 1995, Conference Record of The Twenty-Ninth Asilomar Conference on Signals, Systems and Computers.

[36]  Leonard T. Bruton,et al.  3-D IIR filtering using decimated DFT-polyphase filter bank structures , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[37]  Minh N. Do,et al.  Multidimensional Directional Filter Banks and Surfacelets , 2007, IEEE Transactions on Image Processing.

[38]  Oscar Nestares,et al.  Automatic enhancement of noisy image sequences through local spatiotemporal spectrum analysis , 2000 .

[39]  N.G. Kingsbury,et al.  Frequency-domain motion estimation using a complex lapped transform , 1993, IEEE Trans. Image Process..

[40]  Z. Kollar,et al.  Recursive Discrete Fourier Transform based SMT receivers for cognitive radio applications , 2012, 2012 19th International Conference on Systems, Signals and Image Processing (IWSSIP).

[41]  E. Jacobsen,et al.  The sliding DFT , 2003, IEEE Signal Process. Mag..

[42]  Dimitrios S. Alexiadis,et al.  Narrow directional steerable filters in motion estimation , 2008, Comput. Vis. Image Underst..