Memory applications from 2D materials

As existing silicon-based memory technologies are reaching their fundamental limit, emerging memory alternatives, such as resistive random‐access memories (RRAMs), magnetic random‐access memories, and ferroelectric random‐access memories, are intensively investigated with the aim of improving capacity, write/read speed, efficiency, and implementing unconventional computing for data-centric applications. Recent studies have exploited the nature of 2-dimensional layered materials (2DLMs) to integrate highly disparate materials with unique physical and chemical properties without the constraint of lattice matching and have demonstrated novel memory devices (such as resistive and magnetic) with unprecedented characteristics or unique functionalities desired in emerging memory technologies. This article primarily provides an overview of the progress made, advantages, and challenges toward practical application of 2DLM-based memory units. In this regard, novel electronic properties of these 2DLMs allow designing not only the memory unit but also selectors and CMOS components essential for RRAM technology. Here, we also experimentally demonstrate a proof-of-concept heterostructure consisting of 2DLMs that fulfill the function of a memory unit (using MoTe2) and selector (using WSe2) with desired characteristics for RRAM integration. This demonstration underscores the potential of 2DLMs and their heterostructure toward the realization of future memory technologies.

[1]  Zhixian Zhou,et al.  Low-Resistance 2D/2D Ohmic Contacts: A Universal Approach to High-Performance WSe2, MoS2, and MoSe2 Transistors. , 2016, Nano letters.

[2]  Kenji Watanabe,et al.  Nearly room temperature ferromagnetism in a magnetic metal-rich van der Waals metal , 2020, Science Advances.

[3]  U. Waghmare,et al.  Emergence of ferroelectricity at a metal-semiconductor transition in a 1T monolayer of MoS2. , 2014, Physical review letters.

[4]  J. Kong,et al.  Integrated circuits based on bilayer MoS₂ transistors. , 2012, Nano letters.

[5]  H. Ohno,et al.  Tunnel magnetoresistance of 604% at 300K by suppression of Ta diffusion in CoFeB∕MgO∕CoFeB pseudo-spin-valves annealed at high temperature , 2008 .

[6]  P. Ye,et al.  A ferroelectric semiconductor field-effect transistor , 2018, Nature Electronics.

[7]  Xing Wu,et al.  Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2 , 2020, Nano Research.

[8]  Stephen Jesse,et al.  The role of electrochemical phenomena in scanning probe microscopy of ferroelectric thin films. , 2011, ACS nano.

[9]  S. Datta,et al.  Back-End-of-Line Compatible Transistors for Monolithic 3-D Integration , 2019, IEEE Micro.

[10]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[11]  Likai Li,et al.  Black phosphorus field-effect transistors. , 2014, Nature nanotechnology.

[12]  Zhiming Yu,et al.  Spin-momentum locking and spin-orbit torques in magnetic nano-heterojunctions composed of Weyl semimetal WTe2 , 2018, Nature Communications.

[13]  Wei Huang,et al.  Preparation of MoS₂-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. , 2012, Small.

[14]  Francky Catthoor,et al.  Doping-Free Complementary Logic Gates Enabled by Two-Dimensional Polarity-Controllable Transistors. , 2018, ACS nano.

[15]  Jing Guo,et al.  High tunnelling electroresistance in a ferroelectric van der Waals heterojunction via giant barrier height modulation , 2020 .

[16]  Jiantao Zhou,et al.  Crossbar RRAM Arrays: Selector Device Requirements During Write Operation , 2014, IEEE Transactions on Electron Devices.

[17]  Jie Shan,et al.  Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures , 2019, Nature Electronics.

[18]  S. Cheong,et al.  The direct observation of ferromagnetic domain of single crystal CrSiTe3 , 2018 .

[19]  Hao Jiang,et al.  Ferroelectric transistors with monolayer molybdenum disulfide and ultra-thin aluminum-doped hafnium oxide , 2017 .

[20]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[21]  Everton Bonturim,et al.  Scalable energy-efficient magnetoelectric spin–orbit logic , 2018, Nature.

[22]  Amritesh Rai,et al.  Air Stable Doping and Intrinsic Mobility Enhancement in Monolayer Molybdenum Disulfide by Amorphous Titanium Suboxide Encapsulation. , 2015, Nano letters.

[23]  E. Eleftheriou,et al.  Memory devices and applications for in-memory computing , 2020, Nature Nanotechnology.

[24]  An Chen,et al.  Memory selector devices and crossbar array design: a modeling-based assessment , 2017 .

[25]  S. Koester,et al.  Dynamic Memory Cells Using MoS2 Field-Effect Transistors Demonstrating Femtoampere Leakage Currents. , 2016, ACS nano.

[26]  Armantas Melianas,et al.  Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing , 2019, Science.

[27]  D. Mihailovic,et al.  Fast electronic resistance switching involving hidden charge density wave states , 2016, Nature Communications.

[28]  D. Ralph,et al.  Spin–orbit torque field-effect transistor (SOTFET): Proposal for a magnetoelectric memory , 2020, Applied Physics Letters.

[29]  Zi Jing Wong,et al.  Observation of piezoelectricity in free-standing monolayer MoS₂. , 2015, Nature nanotechnology.

[30]  Xiufeng Han,et al.  Room temperature 2D ferromagnetism in few-layered 1$T$-CrTe$_{2}$ , 2019, 1909.09797.

[31]  Moon J. Kim,et al.  MoS2 transistors with 1-nanometer gate lengths , 2016, Science.

[32]  Branimir Radisavljevic,et al.  Small-signal amplifier based on single-layer MoS2 , 2012 .

[33]  Zhihong Chen,et al.  First Demonstration of WSe2 Based CMOS-SRAM , 2018, 2018 IEEE International Electron Devices Meeting (IEDM).

[34]  Jessie Xuhua Niu,et al.  All WSe2 1T1R resistive RAM cell for future monolithic 3D embedded memory integration , 2019, Nature Communications.

[35]  Raja Das,et al.  Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates , 2018, Nature Nanotechnology.

[36]  F Schwierz,et al.  Two-dimensional materials and their prospects in transistor electronics. , 2015, Nanoscale.

[37]  Qi Liu,et al.  8-Layers 3D vertical RRAM with excellent scalability towards storage class memory applications , 2017, 2017 IEEE International Electron Devices Meeting (IEDM).

[38]  G. Eda,et al.  Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating , 2020, Nature Electronics.

[39]  Jehoshua Bruck,et al.  Graphene-based atomic-scale switches. , 2008, Nano letters.

[40]  I. Moon,et al.  High‐Electric‐Field‐Induced Phase Transition and Electrical Breakdown of MoTe2 , 2020, Advanced Electronic Materials.

[41]  Yu Huang,et al.  Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions , 2018, Nature.

[42]  E. Tsymbal,et al.  Spin-dependent transport in van der Waals magnetic tunnel junctions with Fe3GeTe2 electrodes. , 2019, Nano letters.

[43]  Jing Kong,et al.  MoS2 Field-Effect Transistor with Sub-10 nm Channel Length. , 2016, Nano letters.

[44]  H.-S. Philip Wong,et al.  In-memory computing with resistive switching devices , 2018, Nature Electronics.

[45]  A. Stroppa,et al.  Possibility of combining ferroelectricity and Rashba-like spin splitting in monolayers of the 1 T -type transition-metal dichalcogenides M X 2 ( M = Mo , W ; X = S , Se , Te ) , 2016, 1610.00303.

[46]  K. Jiang,et al.  Sub-10 nm Monolayer MoS2 Transistors Using Single-Walled Carbon Nanotubes as an Evaporating Mask. , 2019, ACS applied materials & interfaces.

[47]  A. Sinitskii,et al.  Optoelectrical Molybdenum Disulfide (MoS2)--Ferroelectric Memories. , 2015, ACS nano.

[48]  Yossi Rosenwaks,et al.  Ferroelectric domain inversion: The role of humidity , 2006 .

[49]  Vertical charge transport through transition metal dichalcogenides - a quantitative analysis. , 2017, Nanoscale.

[50]  Masaki Nakano,et al.  Memristive phase switching in two-dimensional 1T-TaS2 crystals , 2015, Science Advances.

[51]  Y. Hao,et al.  Low Voltage Operating 2D MoS2 Ferroelectric Memory Transistor with Hf1-xZrxO2 Gate Structure , 2020, Nanoscale Research Letters.

[52]  J. Appenzeller,et al.  Efficient Spin‐Orbit Torque Switching of the Semiconducting Van Der Waals Ferromagnet Cr2Ge2Te6 , 2020, Advanced materials.

[53]  S. Thompson,et al.  Moore's law: the future of Si microelectronics , 2006 .

[54]  Shimeng Yu,et al.  High-Throughput In-Memory Computing for Binary Deep Neural Networks With Monolithically Integrated RRAM and 90-nm CMOS , 2019, IEEE Transactions on Electron Devices.

[55]  Tengyu Ma,et al.  Why is nonvolatile ferroelectric memory field-effect transistor still elusive? , 2002, IEEE Electron Device Letters.

[56]  A. Morpurgo,et al.  Tunneling Spin Valves Based on Fe3GeTe2/hBN/Fe3GeTe2 van der Waals Heterostructures. , 2018, Nano letters.

[57]  Myungsoo Kim,et al.  Atomristor: Nonvolatile Resistance Switching in Atomic Sheets of Transition Metal Dichalcogenides. , 2018, Nano letters.

[58]  S. Valencia,et al.  2D layered transport properties from topological insulator Bi2Se3 single crystals and micro flakes , 2015, Scientific Reports.

[59]  Pritish Narayanan,et al.  Perspective on training fully connected networks with resistive memories: Device requirements for multiple conductances of varying significance , 2018 .

[60]  Suman Datta,et al.  The era of hyper-scaling in electronics , 2018, Nature Electronics.

[61]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[62]  Xiang Zhang,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[63]  Qi Liu,et al.  Eliminating Negative‐SET Behavior by Suppressing Nanofilament Overgrowth in Cation‐Based Memory , 2016, Advanced materials.

[64]  A. Kis,et al.  Nonvolatile memory cells based on MoS2/graphene heterostructures. , 2013, ACS nano.

[65]  J. Yang,et al.  Emerging Memory Devices for Neuromorphic Computing , 2019, Advanced Materials Technologies.

[66]  Qiming Shao,et al.  Highly Efficient Spin-Orbit Torque and Switching of Layered Ferromagnet Fe3GeTe2. , 2019, Nano letters.

[67]  Gökmen Tayfun,et al.  Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations , 2016, Front. Neurosci..

[68]  Shimeng Yu,et al.  An Electronic Synapse Device Based on Metal Oxide Resistive Switching Memory for Neuromorphic Computation , 2011, IEEE Transactions on Electron Devices.

[69]  J. Yang,et al.  Memristive crossbar arrays for brain-inspired computing , 2019, Nature Materials.

[70]  A. Krasheninnikov,et al.  Enhanced Ferromagnetism and Tunable Magnetism in Fe3GeTe2 Monolayer by Strain Engineering. , 2020, ACS applied materials & interfaces.

[71]  E. Reed,et al.  Structural phase transition in monolayer MoTe2 driven by electrostatic doping , 2017, Nature.

[72]  Jie Shan,et al.  Controlling magnetism in 2D CrI3 by electrostatic doping , 2018, Nature Nanotechnology.

[73]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[74]  Borivoje Nikolic,et al.  SRAM Assist Techniques for Operation in a Wide Voltage Range in 28-nm CMOS , 2012, IEEE Transactions on Circuits and Systems II: Express Briefs.

[75]  Kang L. Wang,et al.  Above Room-Temperature Ferromagnetism in Wafer-Scale Two-Dimensional van der Waals Fe3GeTe2 Tailored by Topological Insulator. , 2020, ACS nano.

[76]  C. Richter,et al.  Controllable, Wide‐Ranging n‐Doping and p‐Doping of Monolayer Group 6 Transition‐Metal Disulfides and Diselenides , 2018, Advanced materials.

[77]  L. Lauhon,et al.  Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. , 2015, Nature nanotechnology.

[78]  Pritish Narayanan,et al.  Equivalent-accuracy accelerated neural-network training using analogue memory , 2018, Nature.

[79]  H-S Philip Wong,et al.  Memory leads the way to better computing. , 2015, Nature nanotechnology.

[80]  Gautam Gupta,et al.  Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. , 2014, Nature materials.

[81]  F. Zhang,et al.  Electric-field induced structural transition in vertical MoTe2- and Mo1–xWxTe2-based resistive memories , 2018, Nature Materials.

[82]  Sergei V. Kalinin,et al.  Exploring local electrostatic effects with scanning probe microscopy: implications for piezoresponse force microscopy and triboelectricity. , 2014, ACS nano.

[83]  Guangyu Zhang,et al.  Graphene‐Contacted Ultrashort Channel Monolayer MoS2 Transistors , 2017, Advanced materials.

[84]  Kenji Watanabe,et al.  Transferred via contacts as a platform for ideal two-dimensional transistors , 2019, Nature Electronics.

[85]  T. Yu,et al.  Direct Photoluminescence Probing of Ferromagnetism in Monolayer Two-Dimensional CrBr3. , 2019, Nano letters.

[86]  P. Ajayan,et al.  Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes , 2016, Nature Communications.

[87]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[88]  Michael A. McGuire,et al.  Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures , 2018, Science.

[89]  E. Tsymbal,et al.  A room-temperature ferroelectric semimetal , 2019, Science Advances.

[90]  M. L. Van de Put,et al.  Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk , 2018, npj 2D Materials and Applications.

[91]  D. Ralph,et al.  Spin-Torque Switching with the Giant Spin Hall Effect of Tantalum , 2012, Science.

[92]  A. Gruverman,et al.  Piezoresponse force microscopy and nanoferroic phenomena , 2019, Nature Communications.

[93]  Wei Chen,et al.  Role of metal contacts in high-performance phototransistors based on WSe2 monolayers. , 2014, ACS nano.

[94]  Wang Yao,et al.  Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2 , 2018, Nature Materials.

[95]  F. Pan,et al.  Recent progress in voltage control of magnetism: Materials, mechanisms, and performance , 2017, 1702.03730.

[96]  Eric Pop,et al.  Rapid Flame Synthesis of Atomically Thin MoO3 down to Monolayer Thickness for Effective Hole Doping of WSe2. , 2017, Nano letters.